STORMWATER MANAGEMENT REPORT

for

PROPOSED GROCER AT THE PROMENADE SHOPS AT EVERGREEN WALK (UNIT 2) 801 Evergreen Way South Windsor, CT

Prepared for:

Charter Realty & Development Corp. C/O Karen Johnson 75 Holly Hill Lane, Suite 305 Greenwich, CT 06830

Prepared By:

Langan CT, Inc. 555 Long Wharf Drive New Haven, CT 06511

David Gagnon

Connecticut P.E. No. 0029766

Timothy S. Onderko Connecticut P.E. No. 25760

April 8, 2021 Revised June 10, 2021 140222801

555 Long Wharf Drive New Haven, CT 06511 T: 203.562.5771 F: 203.789.6142 www.langan.com

TABLE OF CONTENTS

			<u>Page No.</u>
EXE (CUTIVE	SUMMARY	
1.0	INTF	RODUCTION	3
	1.1	General	3
	1.2	Site Location	3
	1.2	Existing Conditions	3
	1.4	Project Description	4
	1.6	FEMA	4
	1.7	Soil Conditions	4
2.0	STO	RMWATER MANAGMENT	6
	2.1	Design Criteria	6
	2.2	Design Methodology	6
	2.4	Existing Runoff Discharges	7
	2.5	Proposed Runoff Discharges	7
3.0	STO	RMWATER QUALITY	9
	3.1	Stormwater Quality Improvements	9
	3.2	Additional Stormwater Quality Features	9
4.0	STO	RMWATER DRAINAGE COLLECTION SYSTEM DESIGN	10
	4.1	Design Criteria	10
	4.2	Design Methodology	10
	4.3	Storm Drainage Collection Summary	11
5.0	CON	CLUSION	11

FIGURES

Figure 1	Site Location Map
Figure 2	Aerial Map
Figure 3	Zoning Map
Figure 4	Effective FEMA Firm Map
Figure 5	NRCS Soils Map
Figure 6	DRA-1 Evergreen Walk Master Plan Development Area

DRAWINGS

Drawing EX-WS Existing Watershed Map
Drawing PR-WS Proposed Watershed Map
Drawing DA-CB Drainage Area Map

APPENDICES

Appendix A	Existing Stormwater Discharge Calculations
Appendix B	Proposed Stormwater Discharge Calculations
Appendix C	Stormwater Collection System Calculations
Appendix D	Stormwater Quality Calculations
Appendix E	NOAA Atlas 14 Rainfall Depths & Intensities
Appendix F	Operations & Maintenance Plan

EXECUTIVE SUMMARY

Langan prepared this stormwater management report in support of the proposed grocery and retail stores located at 801 Evergreen Way within Unit 2 of the Promenade Shops at Evergreen Walk, located in the town of South Windsor, Connecticut. This site is identified as Map 27, Block 15, Unit 2 by the Town of South Windsor Assessor's Office and is approximately 7.3± acres of the Evergreen Walk Master Development Plan Area.

In the existing condition, two retail buildings with associated parking lots and drive aisles occupy the site. The majority of stormwater is collected by on-site drainage structures. It is conveyed through an existing pipe network in Hemlock Avenue in the westerly direction where it eventually discharges to Detention Basin 4 or a drainage swale that both ultimately discharge to the nearby wetlands.

The proposed redevelopment project includes the demolition of the two existing retail buildings and the construction of a $\pm 40,000$ square-foot grocer and adjacent inline $\pm 10,000$ square-foot retail space. Other associated site improvements including walkways, parking, drive aisles, driveways, site lighting, utility improvements, and drainage improvements. The overall impervious coverage has been reduced (approximately 0.5%), the overall peak flow rates have been reduced, and additional water quality measures have been introduced on site.

The proposed stormwater management system has been designed in general compliance with the Town of South Windsor Design Requirements, the 2002 State of Connecticut Guidelines for Soil Erosion and Sediment Control, and the 2004 Connecticut Stormwater Quality Manual. This report demonstrates that the proposed stormwater system will effectively manage the quality and quantity of stormwater runoff for the proposed development at 801 Evergreen Way, consistent with the approved master plans. A comparative analysis is provided of the calculated total pre- and post-development site runoff conditions, in which the overall peak runoff flow rates leaving the project limits in the 2, 10, 25, and 100-year storm events do not exceed those in the existing condition. In addition, stormwater quality improvements and the installation of erosion and sedimentation controls during demolition and construction periods is specified, as well as long-term stabilization and pollution prevention on the site.

Water quality Best Management Practices (BMP's) have also been incorporated to promote treatment and include sumped catch basins, rain gardens, permeable pavers, a reduction in pervious surfaces, and three water quality units.

It is the opinion of this office and the findings of this report that the proposed stormwater system, as designed, will effectively manage the stormwater runoff for quality and quantity for the proposed redevelopment. The design in this report is further supported by the "Proposed Grocer at The Promenade Shops at Evergreen Walk" plans prepared by Langan and dated April 6, 2021.

INTRODUCTION

1.1 General

This stormwater management report has been prepared in support of the proposed grocery and retail spaces to be located at 801 Evergreen Way (Unit 2) in the town of South Windsor, Connecticut. The development will include the construction of a ±40,000 square-foot grocer and adjacent inline ±10,000 square-foot retail space along with associated parking, drive aisles, driveways, walkways, a loading dock, landscaped areas, site lighting, utility upgrades, and drainage improvements. This report addresses the engineering design of the stormwater conveyance and management systems for the site.

1.2 Site Location

This site is identified as Map 27, Block 15, Unit 2 by the Town of South Windsor Assessor's Office and is approximately 7.3± acres of the Evergreen Walk Master Development Plan Area. The project limits is bordered by a largely wooded area to the north, wetlands and retail space to the east, a private drive Hemlock Avenue to the south, and Evergreen Crossings Retirement Community to the west. A Costco and fueling station is proposed to be developed to the north of the site on the currently vacant land.

1.3 <u>Existing Conditions</u>

The proposed site is currently developed with two existing retail buildings, parking lot, and associated site features. The site generally slopes from east to west with an elevation ± 139 at the eastern most part of the site, elevation ± 107 in the southwest corner of the site, and existing building elevations of ± 130 and ± 128 .

Currently ±2,460 square-feet of wetlands and ±29,765 square-feet of upland review area, inclusive of the wetland area, are present in the northeast corner of the site. The wetlands have been delineated by All Points Technologies Corporation in February 2021 and their findings are presented under a separate cover.

1.4 **Project Description**

The redevelopment project consists of the demolition of two existing retail spaces and construction of a ±40,000 square-foot grocer and adjacent inline ±10,000 square-foot retail space. Site improvements include parking, drive aisles, driveways, a loading dock, landscaping, walkways, site lighting, utility improvements, and drainage improvements.

Because of previous development, no wetland alterations are proposed for the redevelopment of the site, with the exception of intermittent stream and wetland buffer enhancements. Minor regrading and site improvements will take place within the upland review area. These improvements will occur in previously disturbed areas and will generally increase the separation from the wetlands.

Under the proposed conditions, small portion of the west, north, and northeast perimeters of the site will continue to sheet flow off site as they do in existing conditions. The stormwater runoff patterns from the interior of the site will generally be maintained. Runoff will continue to be collected by on-site drainage structures where it is conveyed through closed pipe networks before exiting the site through the existing Evergreen Walk stormwater system. New low impact design techniques such as rain gardens will be added to improve water quality treatment prior to discharging to the closed pipe network.

1.5 FEMA

According to the *Flood Insurance Study of Hartford County, Connecticut* conducted by the Federal Emergency Management Agency (FEMA) map number 09003C0383F with an effective date of September 26, 2008 (Figure 4), the site is located within the FEMA Flood Zone X, which is outside of the 100-year floodplain and is considered an area of minimal flood risk.

1.6 Soil Conditions

Soils are classified into hydrologic soil groups (HSG) to indicate the minimum rate of infiltration obtained for bare soil after prolonged wetting. The HSGs, which are classified as A, B, C, and D, are one element used to determine runoff curve numbers and analyzing stormwater characteristics on site.

<u>Group A:</u> Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

<u>Group B:</u> Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well-drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

<u>Group C:</u> Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

<u>Group D:</u> Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a clay pan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

According to the *USDA Natural Resources Conservation Service Web Soil Survey* (Figure 5), the site soil type is classified as Tisbury silt loam, 0 to 3 percent; Enfield silt loam, 0 to 3 percent slopes; and Enfield silt loam, 3 to 8 percent slopes. The Web Soil Survey has classified these soils as hydrologic soil groups B and C.

Table 1: NRCS Soil Survey

Hydrologic Soil Group - Summary by Map Unit- State of Connecticut

Map Unit Symbol	· I IVIan I Init Nama I			
702 A	Tisbury silt loam, 0 to 3 percent	С		
704 A	Enfield silt loam, 0 to 3 percent slopes	В		
704 B	Enfield silt loam, 3 to 8 percent slopes	В		

All soils within the project site have been classified as hydrologic soil groups B and C. In general, the soils within project site have moderate to slow infiltration rates when thoroughly wet.

1.0 STORMWATER MANAGEMENT

2.1 <u>Design Criteria</u>

Proposed peak flow rates at all points of discharge from the site were analyzed to compare proposed discharge rates with the existing condition.

The storms analyzed include the following:

- A 2-year, 24-hour storm consisting of 3.11 inches of rainfall
- A 10-year, 24-hour storm consisting of 4.91 inches of rainfall
- A 25-year, 24-hour storm consisting of 6.03 inches of rainfall
- A 100-year, 24-hour storm consisting of 7.77 inches of rainfall

These events are based on NOAA Atlas 14, Volume 10, Version 2 South Windsor, CT.

2.2 <u>Design Methodology</u>

The peak runoff discharges for the existing and proposed conditions were analyzed using Soil Conservation Service (SCS) methodology, which outlines procedures for calculating peak rates of runoff resulting from precipitation events, and procedures for developing runoff hydrographs. Values for area, curve number, and time of concentration were calculated for the existing and proposed conditions.

The curve number "CN" is a land-sensitive coefficient that dictates the relationship between total rainfall depth and direct storm runoff. The soils within the watershed are divided into hydrologic soil groups (A, B, C, and D) as previously described.

The time of concentration, Tc, is defined as the time for runoff to travel from the hydraulically most distant point in the watershed to a point of interest. Values of time of concentration were determined for existing and proposed conditions based on land cover and slope of the flow path, using methods outlined in the SCS methodology.

For this study, a 24-hour SCS Type III standard rainfall distribution was used to determine the peak flow rate to all points of discharge from the site.

2.3 Existing Runoff Discharges (See Appendix A for Calculations)

The existing drainage conditions were delineated into four (4) watershed areas: EX-1 through EX-4 (See EX-WS).

Watershed EX-1, consisting of 0.35 acres, is comprised of the western edge of the site. It includes steep sloped landscaped and wooded areas and a portion of the western drive aisle, which is approximately 2,200 SF of pavement. Runoff from this watershed sheet flows off site to the west and is either collected in the Tamarack Avenue drainage network or discharged to the wetlands west of the site.

Watershed EX-2, consisting of $1.32\pm$ acres, is comprised of approximately $3,000\pm$ sf of building roof, $47,000\pm$ sf of parking lot, and $7,000\pm$ landscaped area in the western portion of the site. Runoff from this watershed is collected through drainage structures on site and conveyed through a closed pipe drainage network before exiting the site through an 18-inch RCP pipe that eventually discharges to a drainage swale and ultimately flows into the wetlands west of the site.

Watershed EX-3, consisting of 5.46± acres, makes up the majority of the site's runoff. It is comprised of the majority of the existing building roofs, the main parking area, and the site driveways. Runoff from this watershed is collected through various drainage structures on site and is conveyed through a closed pipe drainage network before exiting the site through a 24-inch RCP pipe that connects to the Evergreen Walk drainage network and eventually discharges to Detention Basin 4 west of the site.

Watershed EX-4, consisting 0.16± pervious acres, is comprised of the on-site wetlands in the northeastern corner of the site. Runoff from this watershed sheet flows northeast to the wetlands.

2.4 <u>Proposed Runoff Discharges</u> (See Appendix B for Calculations)

The proposed drainage conditions were delineated into four (4) watershed areas: PR-1 through PR-4 (See PR-WS).

Watershed PR-1, consisting of 0.39 acres, is comprised of the western edge of the site. It includes steep sloped landscaped and wooded areas and a portion of the western

drive aisle, which is approximately 1,800 SF of pavement. Runoff from this watershed sheet flows off site to the west and is either collected in the Tamarack Avenue drainage network or discharged to the wetlands west of the site, as it does in existing conditions.

Watershed PR-2, consisting of 1.32± acres, is comprised of the western portion of the parking lot. Runoff from this watershed is collected through various drainage structures on site and is conveyed through a closed pipe drainage network. The runoff passes through a proposed water quality unit before exiting the site through an existing 18-inch pipe that connects to a drainage manhole southwest of the site. Runoff eventually discharges to a drainage swale that ultimately flows into wetlands west of the site, as it does in existing conditions.

Watershed PR-3, consisting of 5.43± acres, makes up the majority of the site's runoff. It is comprised of the building roof, the front parking area, and the site driveways. Runoff from this watershed is collected through various drainage structures on site and conveyed through a closed pipe drainage network. The runoff passes through a proposed water quality unit before exiting the site through a 24-inch pipe that connects to the Evergreen Walk drainage network and eventually discharges to Detention Basin 4, as it does in existing conditions.

Watershed PR-4, consisting 0.16± pervious acres, is comprised of the on-site wetlands in the northeastern corner of the site. Runoff from this watershed sheet flows northeast to the wetlands as it does in existing conditions.

Table 2: Peak Runoff Flow Comparison (CFS)

Design Point	2-YEAR		10-YEAR		25-YEAR		100-YEAR	
J	Existing	Proposed	Existing	Proposed	Existing	Proposed	Existing	Proposed
Design Point 1 (Tamarack Ave.)	0.81	0.87	1.49	1.62	1.91	2.09	2.56	2.81
Design Point 2 (Hemlock Ave. 18" RCP)	4.05	3.97	6.51	6.45	8.03	7.98	10.38	10.34
Design Point 3 (Hemlock Ave. 24" RCP)	16.42	16.33	26.67	26.52	32.99	32.81	42.76	42.53
Design Point 4 (Wetlands)	0.34	0.34	0.65	0.65	0.84	0.84	1.14	1.14
Total Site Discharge	21.63	21.51	35.31	35.23	43.76	43.55	56.84	56.81

Note: Because of varying times of concentrations, the total site discharge is not cumulative of the contributing flows.

The redevelopment project has been designed to the maximum extent practicable to maintain existing drainage patterns. In addition, the proposed development results in a net decrease in the site's impervious areas by approximately $\pm 1,330$ square-feet. Ultimately, the majority of the stormwater on site flows into the wetlands west of the abutting development. By striving to maintain existing drainage patterns to the extent feasible and decreasing the total impervious area, the total site peak flow for all analyzed storms are decreased without any additional stormwater management features.

The small increase in the peak flows to Design Point 1, Tamarack Avenue, is expected to have an insignificant impact on the design point, as it is a minimal increase in flow and volume and ultimately connects to the aforementioned wetlands west of the abutting development. Additionally, there is a reduction in discharge rates overall.

2.0 STORMWATER QUALITY

3.1 Stormwater Quality Improvements

The stormwater management system has been designed in with the guidance of the Connecticut DEEP Stormwater Quality Manual and the Connecticut DEEP Soil Erosion and Sediment Control Manual. The primary source of water quality improvement comes from the reduction in the sites total impervious area, added landscaped areas, added rain gardens, added water quality units, and modernization of the drainage network.

3.2 Additional Stormwater Quality Features

In addition to decreasing the site's impervious area, the following additional waterquality control measures will be provided:

<u>Catch basins with sumps</u>: Catch basins at the site are to be constructed with sumps (minimum 2 feet) to prevent discharge of sediments.

<u>Rain gardens</u>: Rain gardens are to be constructed in landscaped islands to facilitate the filtering of collected stormwater.

Water Quality Units: Water quality units are to be installed prior to discharge into the existing storm sewer system within Hemlock Avenue.

<u>Permeable pavers and pavement</u>: Permeable pavers are to be installed in the pedestrian only seasonal marketing area, and permeable pavement is to be added at the parking spaces behind the building, which leads to a net decrease in impervious area for the site.

3.0 STORM DRAINAGE COLLECTION SYSTEM DESIGN (See Appendix C for Calculations)

4.1 Design Criteria

The proposed subsurface storm drainage collection system is designed to convey the 10-year design storm with event with one foot of freeboard per the Town of South Windsor requirements.

4.2 Design Methodology

The storm drainage system was analyzed using the Rational Method for estimating runoff for a 10-year design storm event. The site was divided into subareas, each contributing runoff to an individual catch basin inlet or roof drain. A value for area, time of concentration, and runoff coefficient was calculated for each contributing subarea.

Values of time of concentration were chosen based on land cover and flow path slope from the hydraulically most distant point in the subarea to the appropriate inlet. The average runoff coefficient, which is the ratio of peak runoff rate to the average rainfall rate for the period known as the time of concentration, was chosen using the following values:

<u>CONDITION</u>	<u>C</u>
Grass/Landscaping	0.30
Paved/Impervious/Roof	0.90

Rainfall intensities were taken from the NOAA Atlas 14, Volume 10, Version 2 South Windsor, CT rain gauge data. Storm drainage pipes were then sized based on calculated flows using Manning's Equation and were verified by solving for the hydraulic grade line. Starting hydraulic grade lines for the pipe networks were set to the calculated maximum water elevations for the 10-year-design storm event within the analyzed drainage network.

4.3 Storm Drainage Collection Summary

The runoff from the development will be collected using a conventional roof drains, catch basin, and manhole system. The collection system was designed to convey the 10-year storm to allow for one foot of free board within the proposed catch basins on-site.

4.0 CONCLUSION

The proposed stormwater management system has been designed in general accordance with the town of South Windsor requirements, the 2004 CT DEEP Stormwater Quality Manual, and the 2000 CT DOT Drainage Manual. The system incorporates stormwater quality measures and decreases the overall peak rate of runoff from the project development for all storm events analyzed as compared to the existing conditions.

It is the opinion of this office and the findings of this report that the proposed stormwater system, as designed, will effectively manage quality and quantity of stormwater runoff for the proposed development.

LIST OF FIGURES

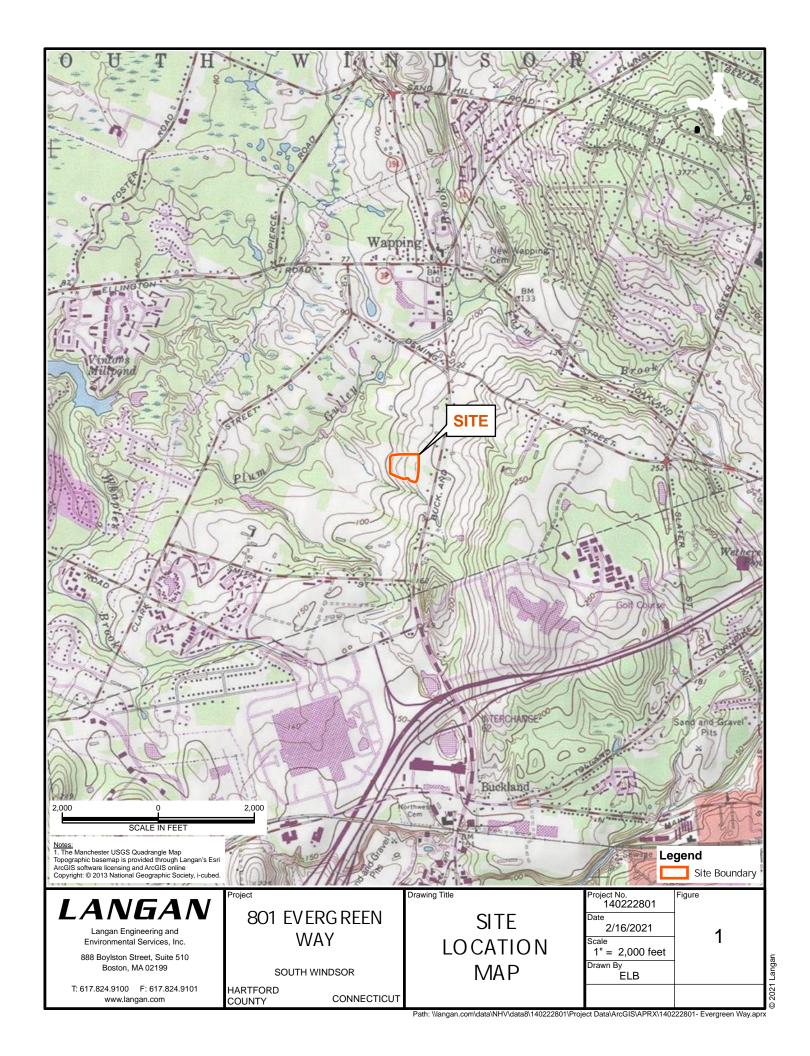
Figure 1 Site Location Map

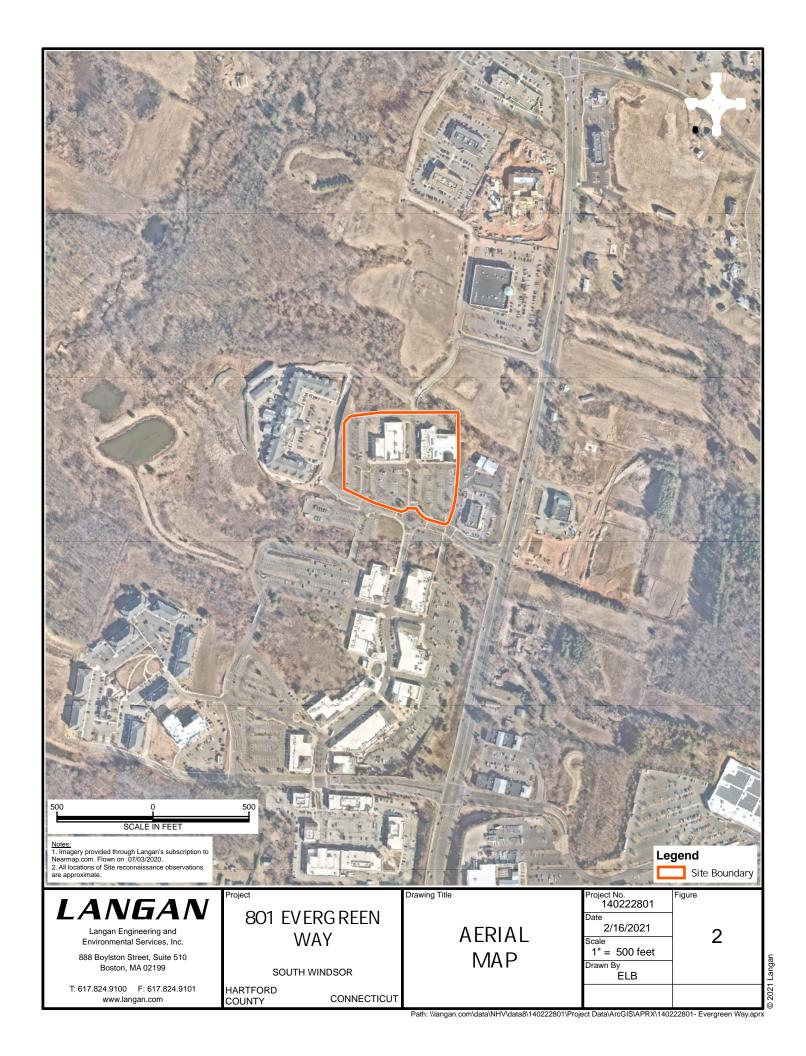
Figure 2 Aerial Map

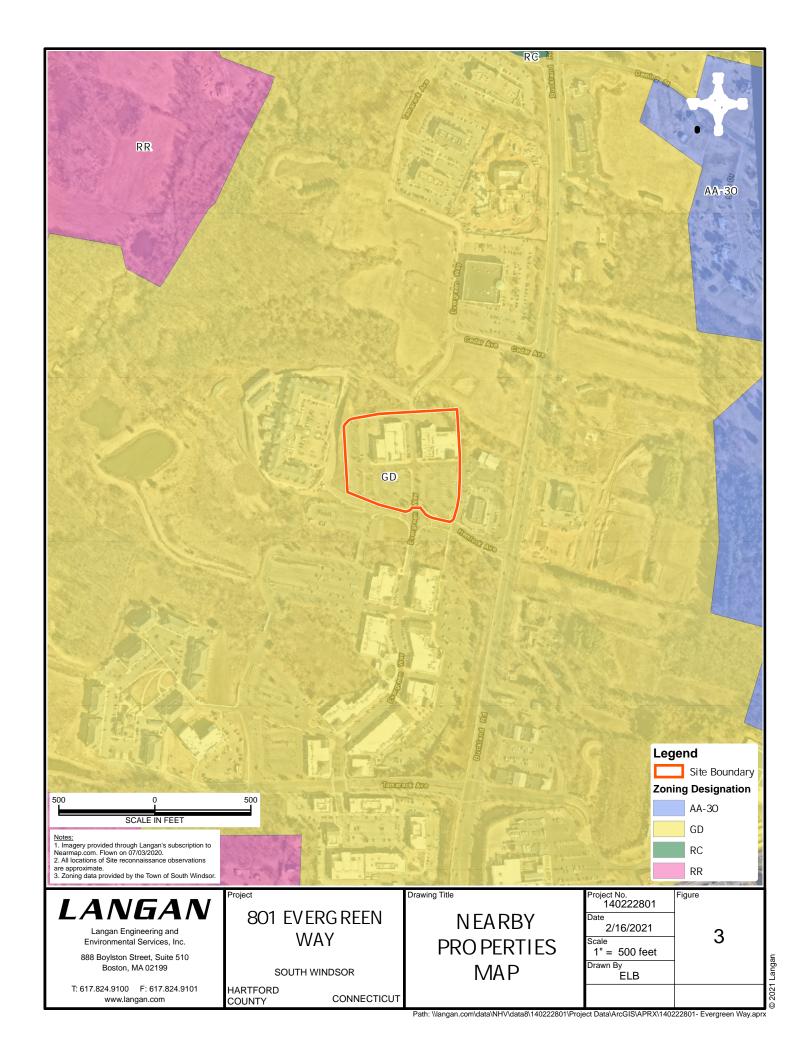
Figure 3 Zoning Map

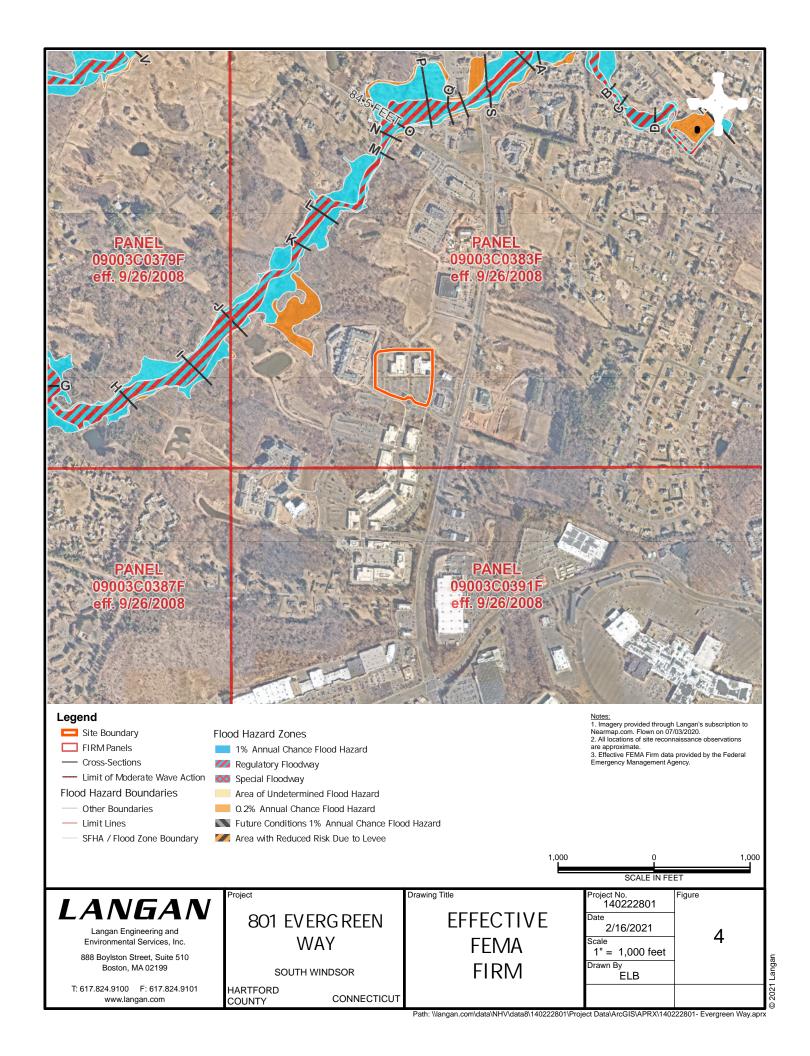
Figure 4 Effective FEMA Firm Map

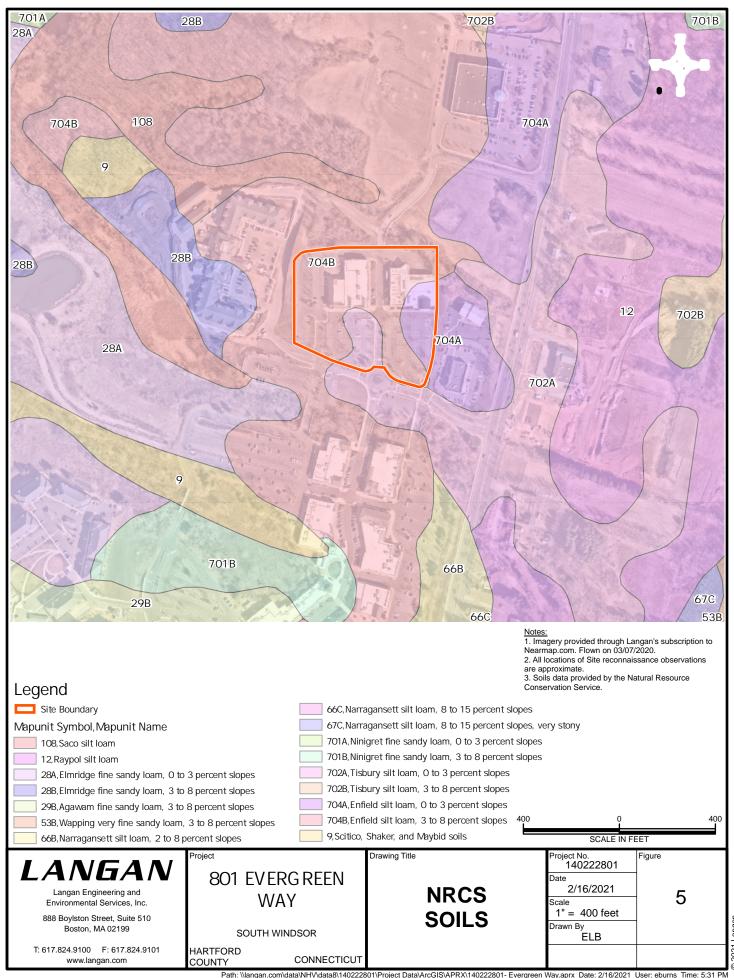
Figure 5 NRCS Soils Map

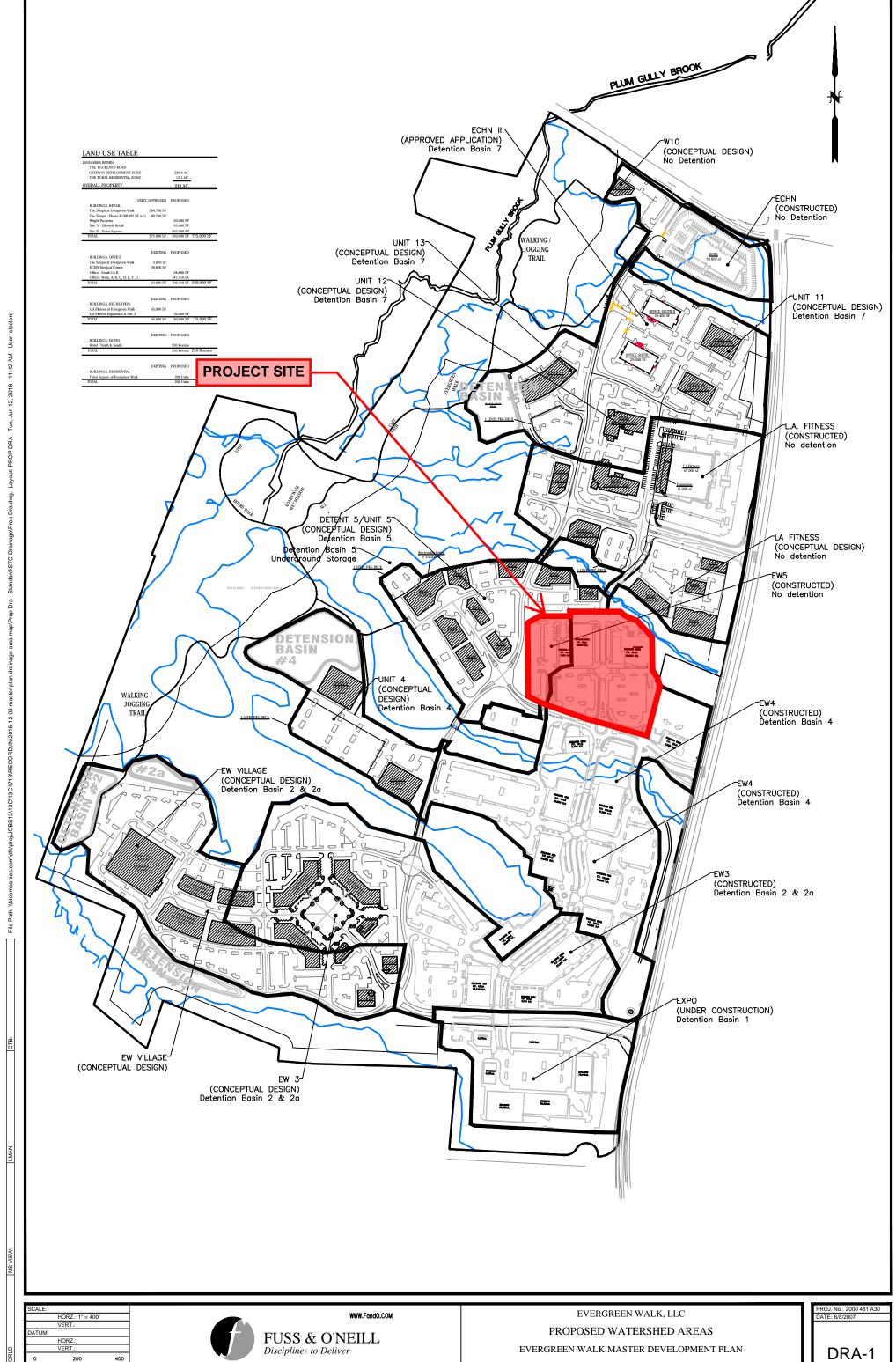

LIST OF DRAWINGS


EX-WS Existing Watershed Area

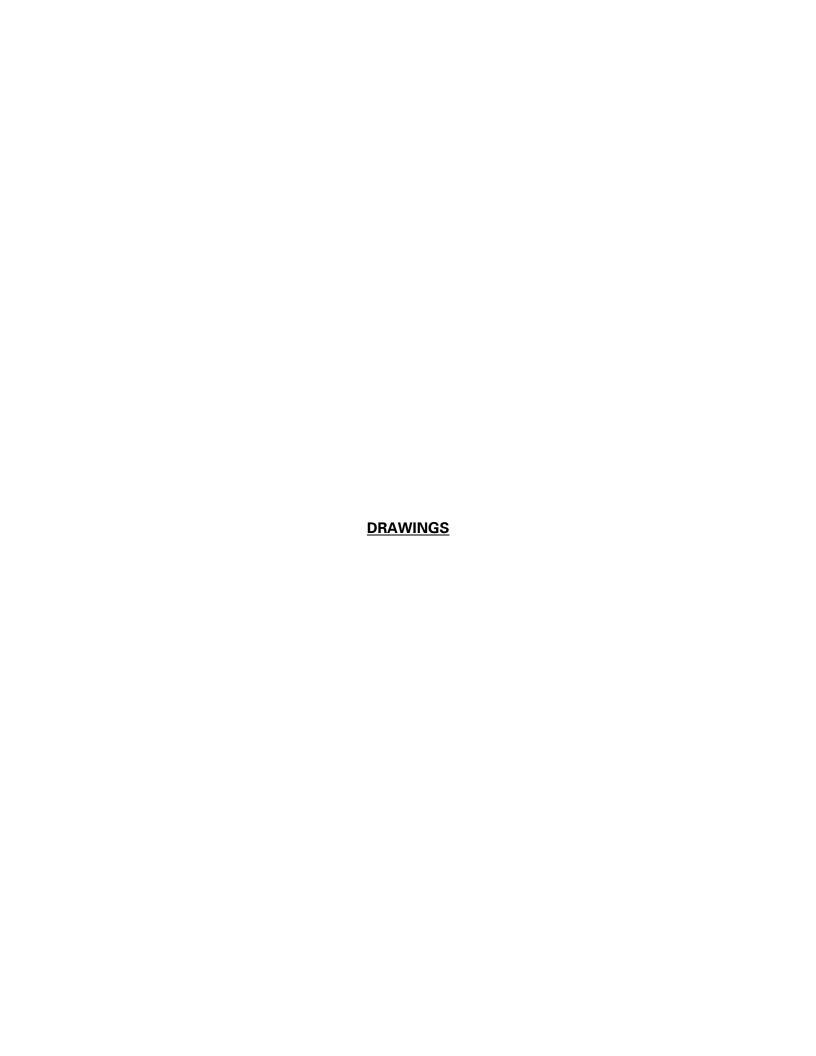

PR-WS Proposed Watershed Area

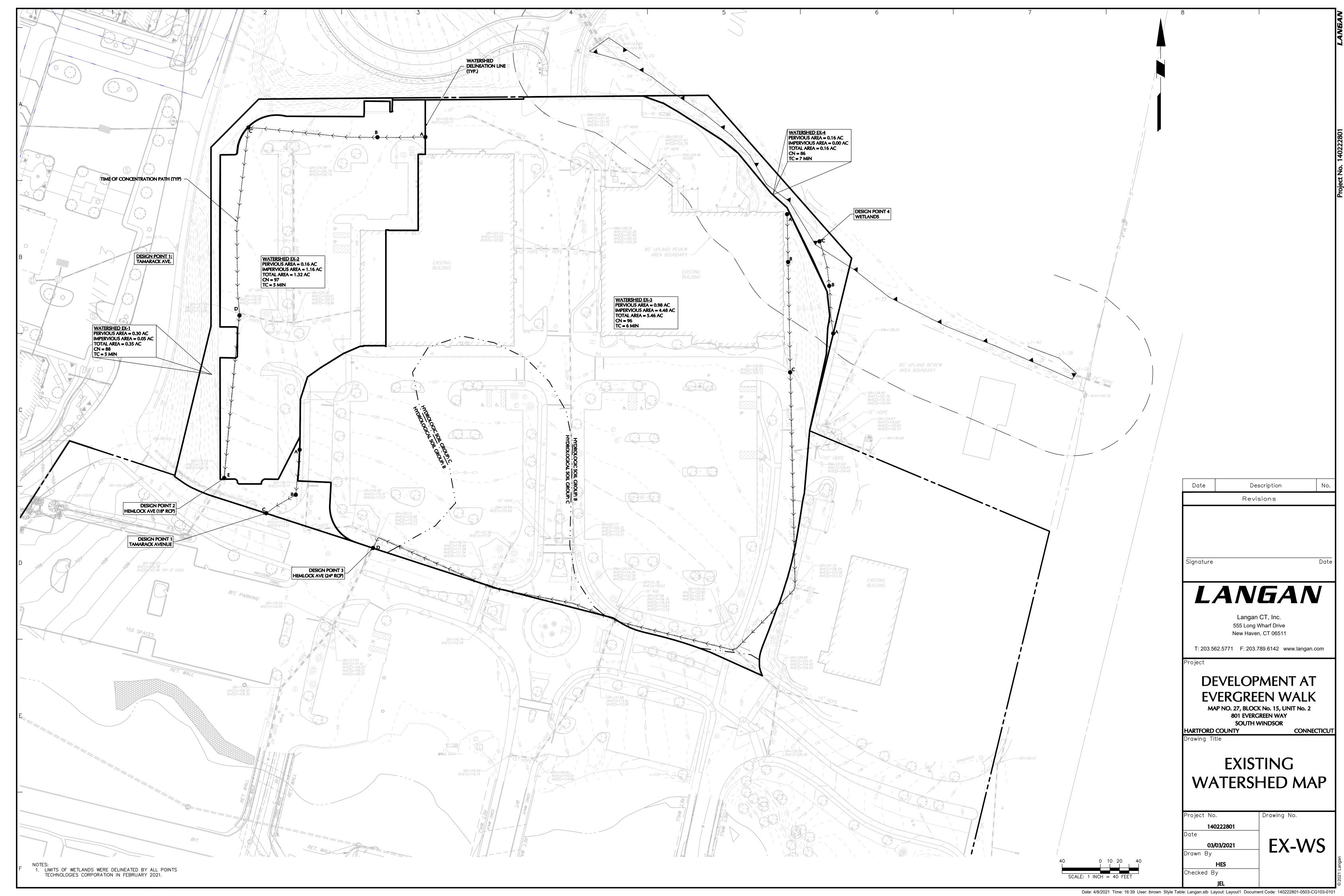

DA-CB Drainage Area Map

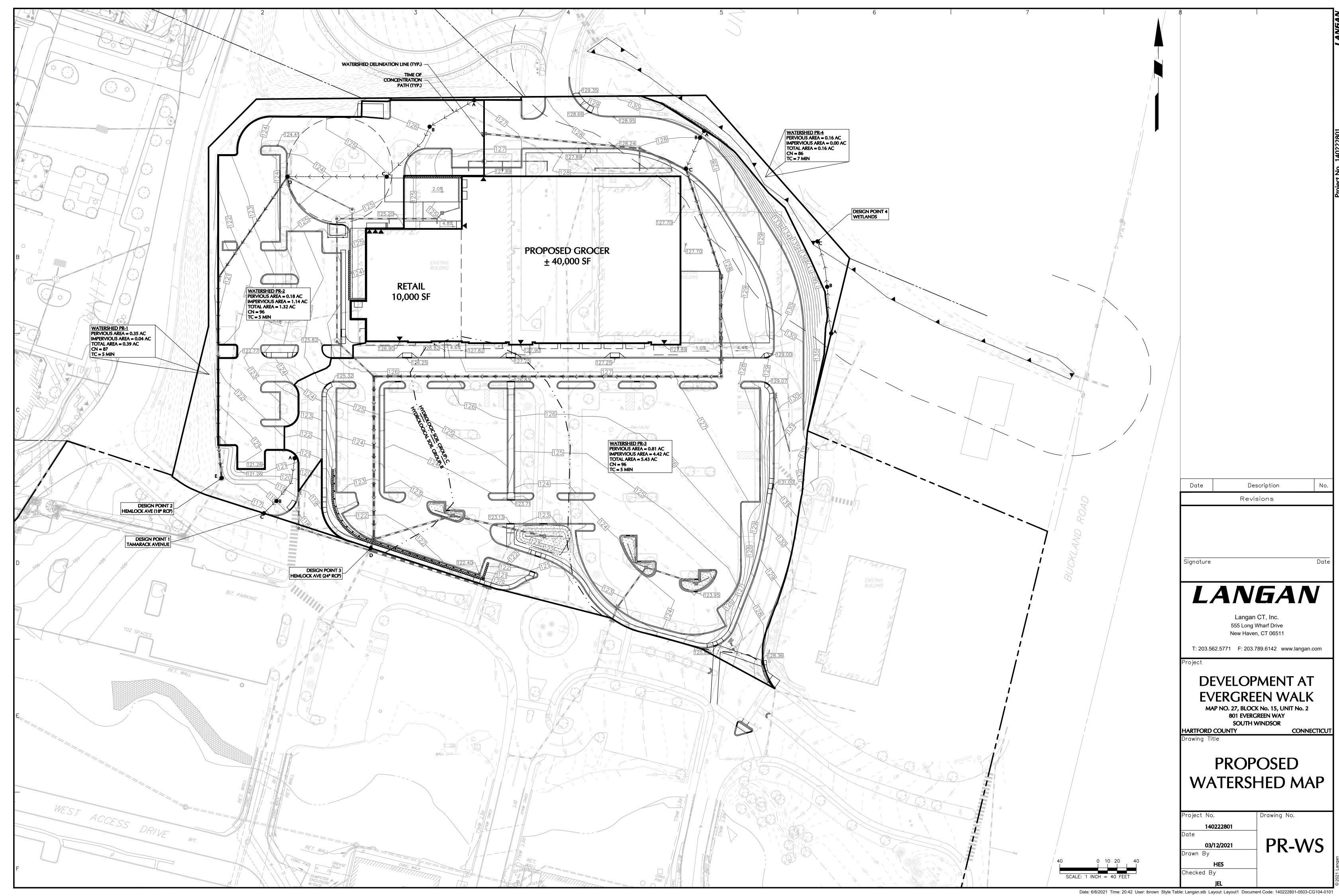


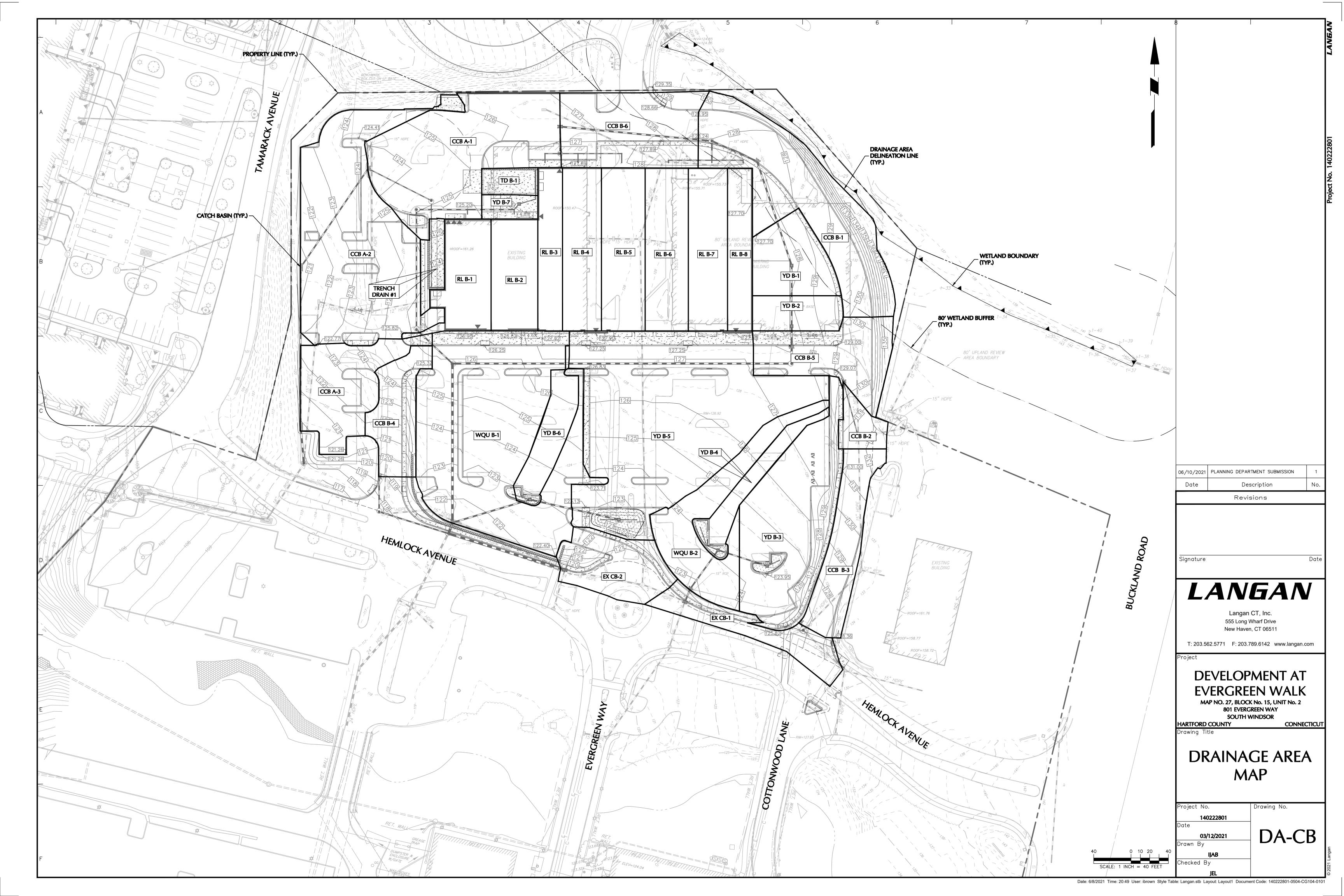


GRAPHIC SCALE


146 HARTFORD RD


MANCHESTER, CT 06040


860.646.2469


SOUTH WINDSOR

CONNECTICUT

APPENDIX A

Existing Stormwater Discharge Calculations

Project	Evergreen Walk		Ву	HES	Date	3/12/2021		
Location	South Windsor, CT		Checked	JEL	Date	3/12/2021		
Circle One:	Present Developed						•	
Circle One:	T_c T_t through sub	area		E	X-1			
	e for as many as two segments pe ksheet.	r flow typ	e can be	used for	each			
Inc	lude a map, schematic, or descr	iption of 1	flow segm	ents.				
Sheet flow	(Applicable to T_c Only)	Seg	ment ID	AB Short Grass				
1. Surface	description (table 3-1)		-	Prairie				
2. Manning'	s roughness coeff., n (table 3-	1)		0.15				
3. Flow Len	gth, L (total L \leq 150 ft)		ft	50				
4. Two-yr 2	4-hr rainfall, P ₂		in	3.1				
5. Land slo	pe, s		ft/ft	0.066	1		_	
6. $T_t = 0.0$	007 (nL) 0.8 Co	ompute T _t	hr	0.059	+	+	=	0.059
	2		г	1		I	ī	
Shallow conc	centrated flow	Seg	ment ID	вс				
7. Surface	description (paved or unpaved)			Unpaved				
8. Flow len	gth, L		ft	34				
9. Watercou	rse slope, s		ft/ft	0.065				
10. Average	velocity, V (figure 3-1)		ft/s	4.1	1			1
11. T _t =	L Co	ompute T _t	hr	0.002		+] = [0.002
Channel flow	<u>ı</u>	Seg	ment ID]		
12. Cross se	ectional flow area, a		ft²					
13. Wetted p	perimeter, p _w		ft					
14. Hydrauli	c radius, r $r = \frac{a}{p_w}$ C	ompute r	ft					
15. Channel	slope, s		ft/ft					
16. Manning'	s roughness coeff., n							
17. V =	$\frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$	ompute V	ft/s					
18. Flow len			ft				1	
19. T _t =	3600 V Co	ompute T _t	hr	-	+	0.000		
20. Watershe	ed or subarea T_c or T_t (add T_t in	steps 6,	11, 19)			0.061	hr	
				Use Tc	= 5	min		

Compute Teach Teac	Project	Evergreen Walk		Ву	HES	Date	3/12/2021		
Circle One:	Location	South Windsor, CT		Checked	JEL	Date	3/12/2021		
NOTES: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments. Sheet flow (Applicable to To Only) 1. Surface description (table 3-1) 2. Manning's roughness coeff., n (table 3-1) 3. Flow Length, L (total L < 150 ft) 4. Two-yz 24-hr rainfall, P2 5. Land slope, s 6. Tc = 0.007(nL) 5-8 F2.5-3-3-4 Compute Tt, hr 0.014 Shallow concentrated flow 7. Surface description (paved or unpaved) 8. Flow length, L 9. Watercourse slope, s 10. Average velocity, V (figure 3-1) 11. Tt = L/3600 V Channel flow Segment ID Segment ID DE 0.038 Compute Tt, hr 0.011 + 0.026 + 0.038 Compute Tt, hr 0.011 + 0.026 + 0.038 Channel flow Segment ID DE 0.038 Compute Tt, hr 0.011 + 0.023 13. Wetted perimeter, Pv 14. Hydraulic radius, r 15. Channel slope, s 16. Manning's roughness coeff., n 17. U = 1.49 L ^{2/3} s ^{3/2} 18. Flow length, L 19. Tt = 3000 V Compute Tt, hr 0.010 + 0.010	Circle One:	Present							
Sheet flow (Applicable to T _c Only) Segment ID AB	Circle One:	T_c T_t through subar	rea		E	X-2			
Sheet flow (Applicable to T _c Only) Segment ID	_		flow type	e can be	used for	each			
1. Surface description (table 3-1) 2. Manning's roughness coeff., n (table 3-1) 3. Flow Length, L (total L ≤ 150 ft) 4. Two-yr 24-hr rainfall, P₂ 5. Land slope, s 6. Tt = 0.007(nL) = 8 Pt = 0.007(nL) = 8 Pt = 0.007(nL) = 10 Pt = 0.0014 Shallow concentrated flow 7. Surface description (paved or unpaved) 8. Flow length, L 9. Watercourse slope, s 10. Average velocity, V (figure 3-1) 11. Tt = L 3600 V Compute Tt 12. Cross sectional flow area, a 13. Wetted perimeter, Px 14. Hydraulic radius, r 15. Channel slope, s 16. Manning's roughness coeff., n V = 1.49 r 2 1/3 s 1/2 17. V = 1.49 r 2 1/3 s 1/2 18. Flow length, L 19. Tt = L 3600 V Compute Tt 175 Compute Tt 175 Compute Tt 176 Compute Tt 1775 Compute Tt 1776 Compute Tt 1776 Compute Tt 1776 Compute Tt 1777 Compute Tt 1776 Compute Tt 1777 Compute Tt 1776 Compute Tt 1777 Co	Inc	lude a map, schematic, or descrip	tion of f	flow segm	ents.				
2. Manning's roughness coeff., n (table 3-1) 3. Flow Length, L (total L \leq 150 ft) 4. Two-yr 24-hr rainfall, P_2 5. Land slope, s 6. $T_t = \frac{0.007 (\ln \ln^{0.0}}{P_2^{0.73} s^{0.4}}$ Compute T_t 6. The sequence of the	Sheet flow ((Applicable to T_c Only)	Seg	ment ID	АВ				
3. Flow Length, L (total L \leq 150 ft) ft 4. Two-yr 24-hr rainfall, P ₂ in 5. Land slope, s ft/ft 6. $T_t = \frac{0.007 (nL)}{P_2^{0.5}}^{0.6}$ Compute T_t hr 7. Surface description (paved or unpaved) 8. Flow length, L	1. Surface	description (table 3-1)		-	Asphalt				
4. Two-yr 24-hr rainfall, P ₂ in 3.1	2. Manning'	s roughness coeff., n (table 3-1)			0.01				
5. Land slope, s 6. $T_t = 0.007 (nL)^{0.8} P_2^{0.5} s^{0.4}$ Compute T_t Compute T_t Nr Compute	3. Flow Len	gth, L (total L \leq 150 ft)		ft	50				
6. $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$ Compute T_t hr 0.014 + $\frac{1}{2}$ + $\frac{1}{2}$ = $\frac{1}{2}$ 0.014 Shallow concentrated flow 8. Flow length, L 9. Watercourse slope, s 10. Average velocity, V (figure 3-1) 11. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t hr $\frac{1}{2}$ 0.011 + $\frac{1}{2}$ 0.026 + $\frac{1}{2}$ 0.038 Channel flow 12. Cross sectional flow area, a 13. Wetted perimeter, P_w 14. Hydraulic radius, r 15. Channel slope, s 16. Manning's roughness coeff., n 17. $V = \frac{1.49 \ r^{2/3} \ s^{1/2}}{n}$ Compute V 18. Flow length, L 19. $V_t = \frac{L}{3600 \text{ V}}$ Compute V_t ft 175. Compute V_t ft 177. V_t 178. V_t 179. V_t	4. Two-yr 2	4-hr rainfall, P ₂		in	3.1				
6. $T_t = \frac{0.007(nL)^{0.8}}{P_2^{0.5} s^{0.4}}$ Compute T_t hr 0.014 Shallow concentrated flow 7. Surface description (paved or unpaved) 8. Flow length, L 9. Watercourse slope, s 10. Average velocity, V (figure 3-1) 11. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t 12. Compute T_t 13. Wetted perimeter, P_w 14. Hydraulic radius, r 15. Channel slope, s 16. Manning's roughness coeff., n 17. $V = \frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{n}$ 18. Flow length, L 19. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t 19. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t 10. Onl 11. $T_t = \frac{L}{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}$ Compute T_t 15. Compute T_t 16. Manning's roughness coeff., n 17. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t 18. Flow length, L 19. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t 10. Onl 10. Onl 11. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t 12. Onl 13. Wetted perimeter, T_t 14. Hydraulic radius, T_t 15. Compute T_t 16. Manning's roughness coeff., T_t 17. T_t 18. Flow length, T_t 19. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t 19. T_t 10. Onl 10. Onl 10. Onl 11. T_t 12. T_t 12. T_t 13. T_t 14. T_t 15. T_t 16. T_t 17. T_t 17. T_t 18. Flow length, T_t 19. T_t 19. T_t 10. Onl 11. T_t 12. T_t 12. T_t 13. T_t 14. T_t 15. T_t 16. T_t 17. T_t 17. T_t 18. Flow length, T_t 19. T_t 19. T_t 10. Onl 10	5. Land slo	pe, s		ft/ft	0.012			_	
Shallow concentrated flow 7. Surface description (paved or unpaved) 8. Flow length, L 9. Watercourse slope, s 10. Average velocity, V (figure 3-1) 11. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t 12. Cross sectional flow area, a 13. Wetted perimeter, p_w 14. Hydraulic radius, r 15. Channel slope, s 16. Manning's roughness coeff., n 17. $V = \frac{L}{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}$ 18. Flow length, L 19. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t Compute T_t Compute T_t Compute T_t Find T_t Compute T_t Compu	6. $T_t = 0.0$	007 (nL) 0.8 Com	pute T _t	hr		+	+	= _	0.014
7. Surface description (paved or unpaved) 8. Flow length, L 9. Watercourse slope, s 10. Average velocity, V (figure 3-1) 11. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t 125 193 10. Ou22 10. 0010 11. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t 12. Cross sectional flow area, a 13. Wetted perimeter, p_w 14. Hydraulic radius, r 15. Channel slope, s 16. Manning's roughness coeff., n 17. $V = \frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{n}$ Compute $V = \frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{n}$ Compute $V = \frac{1.75}{1.75}$ Represented the surface of the state of the surface of the surfac	_	. 2		-					
8. Flow length, L	Shallow conc	entrated flow	Seg	ment ID	вс	CD			
9. Watercourse slope, s	7. Surface	description (paved or unpaved)			Paved	Paved			
10. Average velocity, V (figure 3-1) $ 11. \ T_t = \frac{L}{3600 \ V} $ Compute T_t hr 0.011 + 0.026 + 0.038 Channel flow Segment ID DE	8. Flow len	gth, L		ft	125	193			
Channel flow Channel flow Segment ID DE 12. Cross sectional flow area, a 13. Wetted perimeter, p_w 14. Hydraulic radius, r 15. Channel slope, s 16. Manning's roughness coeff., n $V = \frac{1.49 \ r^{2/3} \ s^{1/2}}{n}$ Compute T_t $T_t = \frac{L}{3600 \ V}$ Compute T_t $T_t = \frac{L}{0.010}$	9. Watercou	rse slope, s		ft/ft	0.022	0.010			
11. $T_t = \frac{L}{3600 \text{ V}}$ Channel flow Segment ID DE 12. Cross sectional flow area, a 13. Wetted perimeter, p_w 14. Hydraulic radius, r $r = \frac{a}{p_w}$ Compute r 15. Channel slope, r 16. Manning's roughness coeff., r $r = \frac{a}{p_w}$ Compute r 17. Compute r 18. Flow length, r $r = \frac{L}{3600 \text{ V}}$ Compute r $r = \frac{a}{p_w}$ C	10. Average	velocity, V (figure 3-1)		ft/s	3.0	2.0		-	
12. Cross sectional flow area, a ft^2 13. Wetted perimeter, p_w ft 14. Hydraulic radius, r $r = \frac{a}{p_w}$ Compute r ft 15. Channel slope, r ft/ft 16. Manning's roughness coeff., r $r = \frac{a}{p_w}$ Compute r ft/ft 17. $r = \frac{1.49 \ r^{2/3} \ s^{1/2}}{n}$ Compute r $r = \frac{a}{p_w}$ Compu	11. T _t =	L Com	pute T _t	hr	0.011	0.026	+	= _	0.038
13. Wetted perimeter, p_{w} ft 14. Hydraulic radius, r $r = \frac{a}{p_{w}}$ Compute r ft 15. Channel slope, r ft 16. Manning's roughness coeff., r 0.011 17. r 0.011 18. Flow length, r ft 19. r 1.49 r 2/3 r 3/12 19. r 1.5	Channel flow	<u>I</u>	Seg	ment ID	DE				
14. Hydraulic radius, r	12. Cross se	ctional flow area, a		ft²					
14. Hydraulic radius, r $r = \frac{1}{p_w}$ Compute r ft $r = \frac{1}{p_w}$ Comp	13. Wetted p	erimeter, p _w		ft					
16. Manning's roughness coeff., n $V = \frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$ Compute V ft/s $18. \text{ Flow length, L}$ $19. T_{t} = \frac{L}{3600 \text{ V}}$ Compute T_{t} $19. Compute T_{t}$	14. Hydrauli		npute r	ft					
$V = \frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$ $17. \text{Compute V} \text{ft/s} \text{5.00}$ $18. \text{ Flow length, L}$ $19. T_t = \frac{L}{3600 \text{ V}}$ $19. \text{Compute T}_t \text{hr} \text{0.010} \text{ft} \text{0.010}$	15. Channel	slope, s		ft/ft	0.023				
18. Flow length, L 19. $T_t = \frac{L}{3600 \text{ V}}$ 17. Compute V 17. $T_t = \frac{L}{175}$ Compute $T_t = \frac{L}{175}$ The compute V 17. $T_t = \frac{L}{175}$ Compute $T_t = \frac{L}{175}$ The compute V 17. $T_t = \frac{L}{175}$ The	16. Manning'				0.011				
$T_{t} = \frac{L}{3600 \text{ V}} = \frac{L}{0.010} + \frac{L}{19.010}$ Compute T_{t} hr $\frac{0.010}{10.010}$	17. V =	$\frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$ Com	npute V	ft/s	5.00				
		=		ft	175				
20. Watershed or subarea T _c or T _t (add T _t in steps 6, 11, 19)	19. T _t =	3600 V Com	pute T _t	hr	0.010	+	0.010		
Use Tc= 5 min	20. Watershe	d or subarea T_{c} or T_{t} (add T_{t} in s	teps 6, 1		Use Tc:	= 5		hr	

Project	Evergreen Walk		Ву	HES	Date	3/12/2021	<u>.</u>
Location	South Windsor, CT		_Checked	JEL	Date	3/12/2021	<u>-</u>
Circle One:	Present						-
Circle One:	: T_c T_t through su	barea		E	X-3		<u>=</u>
	ce for as many as two segments purksheet.	er flow typ	pe can be	used for e	each		
In	clude a map, schematic, or desc	ription of	flow segm	nents.			
Sheet flow	(Applicable to T_c Only)	Sec	gment ID	АВ			
1. Surface	e description (table 3-1)			Short Grass Prairie			
2. Manning	y's roughness coeff., n (table 3	-1)		0.15			
3. Flow Le	ength, L (total L \leq 150 ft)		ft	50			
4. Two-yr	24-hr rainfall, P ₂		in	3.1			
5. Land sl	ope, s		ft/ft	0.072			
6. $T_t = 0$	007 (nL) ^{0.8}	Compute T _t	hr	0.057		+	0.057
	r ₂ S						•
Shallow cor	ncentrated flow	Seg	gment ID	вс			
7. Surface	e description (paved or unpaved)			Unpaved			
8. Flow le	ength, L		ft	116			
9. Waterco	ourse slope, s		ft/ft	0.032			
10. Average	e velocity, V (figure 3-1)		ft/s	2.9	1		
11. T _t =	1 3600 V	Compute T _t	hr	0.011		+	0.011
Channel flo	<u> </u>	Seg	gment ID	CD			
12. Cross s	sectional flow area, a		ft ²				
13. Wetted	perimeter, p_w		ft				
14. Hydraul	r ≡ 	Compute r	ft				
15. Channel	slope, s		ft/ft	0.017			
_	y's roughness coeff., n			0.011			
17. V =	$\frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$	Compute V	ft/s	5.00			
18. Flow le	=		ft	721	1		1
19. T _t = —	3600 V	Compute T _t	hr	0.040 +		= 0.040	
20. Watersh	ned or subarea T_c or T_t (add T_t i	n steps 6,	11, 19)			0.108	hr
				Use Tc=	6	min	

Project	Evergreen Walk		Ву	HES	Date	3/12/2021	
Location	South Windsor, CT		Checked	JEL	Date	3/12/2021	
Circle One:	Present Developed						
Circle One:	T_c T_t through substituting the substitution T_t	oarea		E	X-4		
	e for as many as two segments poksheet.	er flow typ	e can be	used for	each		
Inc	lude a map, schematic, or descr	ciption of	flow segm	ents.			
Sheet flow	(Applicable to T_c Only)	Seg	ment ID	AB Short Grass			
1. Surface	description (table 3-1)			Prairie			
2. Manning'	s roughness coeff., n (table 3-	-1)		0.15			
3. Flow Len	gth, L (total L \leq 150 ft)		ft	50			
4. Two-yr 2	4-hr rainfall, P ₂		in	3.1			
5. Land slo	pe, s		ft/ft	0.015			
6. $T_t = 0.0$	$\frac{007 (nL)^{0.8}}{2^{0.5} s^{0.4}}$	Compute T _t	hr	0.107	-	+	0.107
Shallow conc	centrated flow	Seg	ment ID	ВС			
7. Surface	description (paved or unpaved)			Unpaved			
8. Flow len	gth, L		ft	48			
9. Watercou	erse slope, s		ft/ft	0.053			
10. Average	velocity, V (figure 3-1)		ft/s	3.7			
11. T _t =	L 0	Compute T _t	hr	0.004	-	+	0.004
Channel flow	<u>r</u>	Seg	ment ID				
12. Cross se	ctional flow area, a		ft²				
13. Wetted p	perimeter, p _w		ft				
14. Hydrauli	c radius, r $r = \frac{a}{p_w}$	Compute r	ft				
15. Channel	slope, s		ft/ft				
16. Manning'	s roughness coeff., n						
17. V =	$\frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$	Compute V	ft/s				
18. Flow len			ft				Ī
19. T _t =	3600 V	Compute T _t	hr	-	-	0.000	
20. Watershe	ed or subarea T_c or T_t (add T_t in	n steps 6,	11, 19)			0.110	hr
				Use Tc	= 7	min	

Drainage Area ID	EX-1
------------------	------

Composite Curve Number Calculations

TR-55 Reference Table

Abbreviated TR-55 Table 2-2a Runoff Curve Numbers for Urban Areas

Cover Description	Curve N	Curve Numbers for Hydrologic Soil Grou (HSG)			
Fully Developed Urban Areas	А	В	С	D	
Pervious Area					
Open Space - Lawns, Parks, and Cemeteries	68	79	86	89	
Woods and Forest	30	55	70	77	
Slectively Cleared Woods and Forest	43	65	76	82	
Impervious Area					
Paved Areas and Roofs	98	98	98	98	
Gravel Roads	76	85	89	91	
Dirt Roads	72	82	87	89	
Developing Urban Areas					
Newly Graded Pervious Areas	77	86	91	94	

Composite Runoff Curve Number Calculation

Composite CN =
$$\frac{\sum_{i=1}^{n} CN_{i} \times A_{i}}{\sum_{i=1}^{n} A_{i}}$$

Cover Description	HSG	CN	Area (ft ²)	CN × A
Newly Graded Pervious Areas	В	86	13,379	1,150,594
Paved Areas and Roofs	В	98	2,082	204,036
				0
				0
				0
	·	Total	15,461	1,354,630

EVERGREEN WALK	BY	HES	
EVERGREEN WALK	DATE	3/12/2021	LANGAN PROJ. NUMBER: 140222801
SOLITH WINDSOD OT	CKD	JEL	
SOUTH WINDSOR, CT	DATE	3/12/2021	

Drainage Area ID	EX-2
------------------	------

Composite Curve Number Calculations

TR-55 Reference Table

Abbreviated TR-55 Table 2-2a Runoff Curve Numbers for Urban Areas

Cover Description	Curve N	Curve Numbers for Hydrologic Soil Group (HSG)		
Fully Developed Urban Areas	А	В	С	D
Pervious Area				
Open Space - Lawns, Parks, and Cemeteries	68	79	86	89
Woods and Forest	30	55	70	77
Slectively Cleared Woods and Forest	43	65	76	82
Impervious Area				
Paved Areas and Roofs	98	98	98	98
Gravel Roads	76	85	89	91
Dirt Roads	72	82	87	89
Developing Urban Areas				
Newly Graded Pervious Areas	77	86	91	94

Composite Runoff Curve Number Calculation

Composite CN =
$$\frac{\sum_{i=1}^{n} CN_{i} \times A_{i}}{\sum_{i=1}^{n} A_{i}}$$

Cover Description	HSG	CN	Area (ft ²)	CN × A
Newly Graded Pervious Areas	В	86	7,171	616,727
Paved Areas and Roofs	В	98	50,664	4,965,081
				0
				0
				0
		Total	57,835	5,581,807

EVERGREEN WALK	BY	HES		
EVERGREEN WALK	DATE	3/12/2021	LANGAN PROJ. NUMBER: 140222801	
SOUTH WINDSOR OT	CKD	JEL		
SOUTH WINDSOR, CT	DATE	3/12/2021		

Drainage Area ID	EX-3
J	-

Composite Curve Number Calculations

TR-55 Reference Table

Abbreviated TR-55 Table 2-2a Runoff Curve Numbers for Urban Areas

Cover Description	Curve N	Curve Numbers for Hydrologic Soil Group (HSG)		
Fully Developed Urban Areas	А	В	С	D
Pervious Area				
Open Space - Lawns, Parks, and Cemeteries	68	79	86	89
Woods and Forest	30	55	70	77
Slectively Cleared Woods and Forest	43	65	76	82
Impervious Area				
Paved Areas and Roofs	98	98	98	98
Gravel Roads	76	85	89	91
Dirt Roads	72	82	87	89
Developing Urban Areas				
Newly Graded Pervious Areas	77	86	91	94

Composite Runoff Curve Number Calculation

Composite CN =
$$\frac{\sum_{i=1}^{n} CN_{i} \times A_{i}}{\sum_{i=1}^{n} A_{i}}$$

Cover Description	HSG	CN	Area (ft ²)	CN × A
Newly Graded Pervious Areas	В	86	33,956	2,920,216
Newly Graded Pervious Areas	С	91	8,939	813,486
Paved Areas and Roofs	В	98	195,305	19,139,890
				0
				0
		Total	238,200	22,873,592

EVERGREEN WALK	BY	HES		
EVERGREEN WALK	DATE	3/12/2021	LANGAN PROJ. NUMBER: 140222801	
SOUTH WINDSOR OT	CKD	JEL		
SOUTH WINDSOR, CT	DATE	3/12/2021		

Drainage Area ID **EX-4**

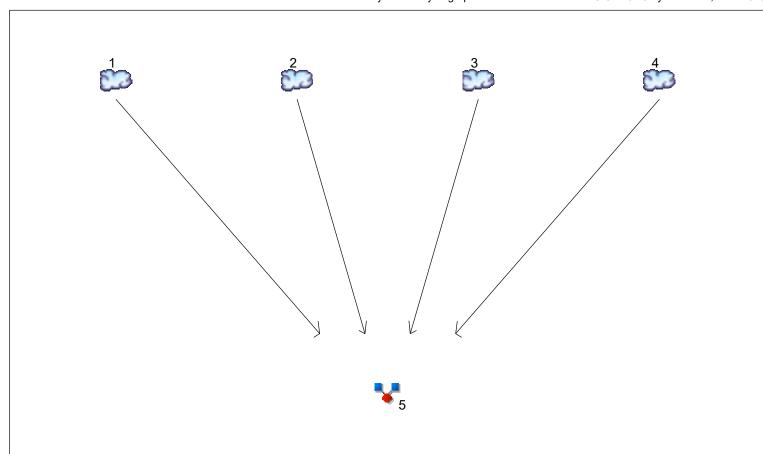
Composite Curve Number Calculations

TR-55 Reference Table

Abbreviated TR-55 Table 2-2a Runoff Curve Numbers for Urban Areas

Cover Description	Curve N	Curve Numbers for Hydrologic Soil Group (HSG)		
Fully Developed Urban Areas	А	В	С	D
Pervious Area				
Open Space - Lawns, Parks, and Cemeteries	68	79	86	89
Woods and Forest	30	55	70	77
Slectively Cleared Woods and Forest	43	65	76	82
Impervious Area				
Paved Areas and Roofs	98	98	98	98
Gravel Roads	76	85	89	91
Dirt Roads	72	82	87	89
Developing Urban Areas				
Newly Graded Pervious Areas	77	86	91	94

Composite Runoff Curve Number Calculation


Composite CN =
$$\frac{\sum_{i=1}^{n} CN_{i} \times A_{i}}{\sum_{i=1}^{n} A_{i}}$$

Cover Description	HSG	CN	Area (ft ²)	CN × A
Newly Graded Pervious Areas	В	86	6,954	598,044
				0
				0
				0
				0
		Total	6,954	598,044

Composite CN	=	86
--------------	---	----

EVERGREEN WALK	BY	HES	
	DATE	3/12/2021	LANGAN PROJ. NUMBER: 140222801
SOUTH WINDSOR, CT	CKD	JEL	
	DATE	3/12/2021	

Watershed Model Schematic

Legend

<u>Hyd.</u>	<u>Origin</u>	<u>Description</u>
1	SCS Runoff	EX-1
2	SCS Runoff	EX-2
3	SCS Runoff	EX-3
4	SCS Runoff	EX-4
5	Combine	Combined Existing Condition

Project: Existing Condition.gpw

Thursday, 04 / 8 / 2021

Hydrograph Return Period Recap

Hyd. Hydrograph Inflow Peak Outflow (cfs) No. type hyd(s)								Hydrograph			
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			0.811			1.485	1.906		2.556	EX-1
2	SCS Runoff			4.053			6.510	8.029		10.38	EX-2
3	SCS Runoff			16.42			26.67	32.99		42.76	EX-3
4	SCS Runoff			0.341			0.647	0.840		1.138	EX-4
5	Combine	1, 2, 3, 4		21.63			35.31	43.76		56.84	Combined Existing Condition

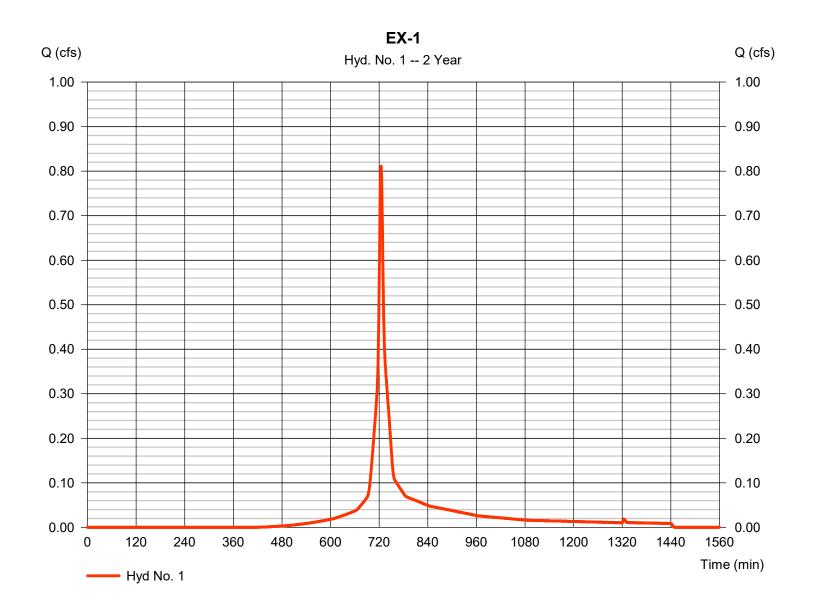
Proj. file: Existing Condition.gpw

Thursday, 04 / 8 / 2021

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

łyd. lo.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.811	1	725	2,511				EX-1
2	SCS Runoff	4.053	1	724	13,674				EX-2
3	SCS Runoff	16.42	1	724	54,377				EX-3
4	SCS Runoff	0.341	1	725	1,052				EX-4
5	Combine	21.63	1	724	71,614	1, 2, 3,			Combined Existing Condition
 Ξхі	sting Condition	n.gpw			Return I	Period: 2 Ye	 ear	Thursday,	04 / 8 / 2021

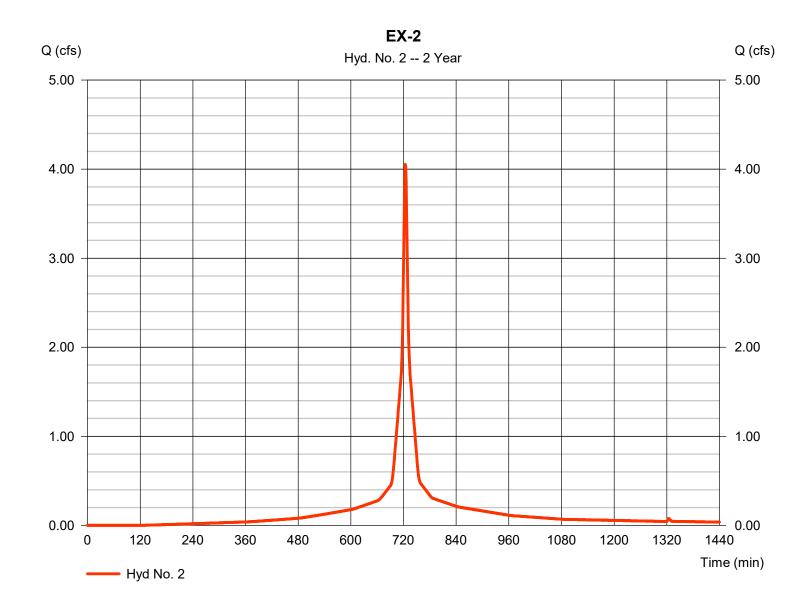

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 1

EX-1

Hydrograph type = SCS Runoff Peak discharge = 0.811 cfsStorm frequency = 2 yrsTime to peak = 725 min Time interval = 1 min Hyd. volume = 2.511 cuft Drainage area Curve number = 0.350 ac= 88 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.11 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

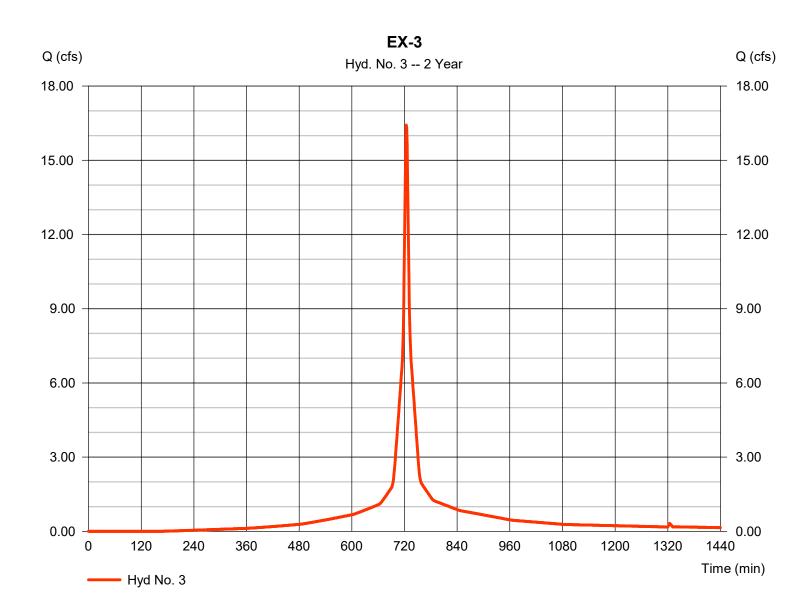

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 2

EX-2

Hydrograph type = SCS Runoff Peak discharge = 4.053 cfsStorm frequency = 2 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 13,674 cuft Drainage area = 1.320 acCurve number = 97 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.11 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

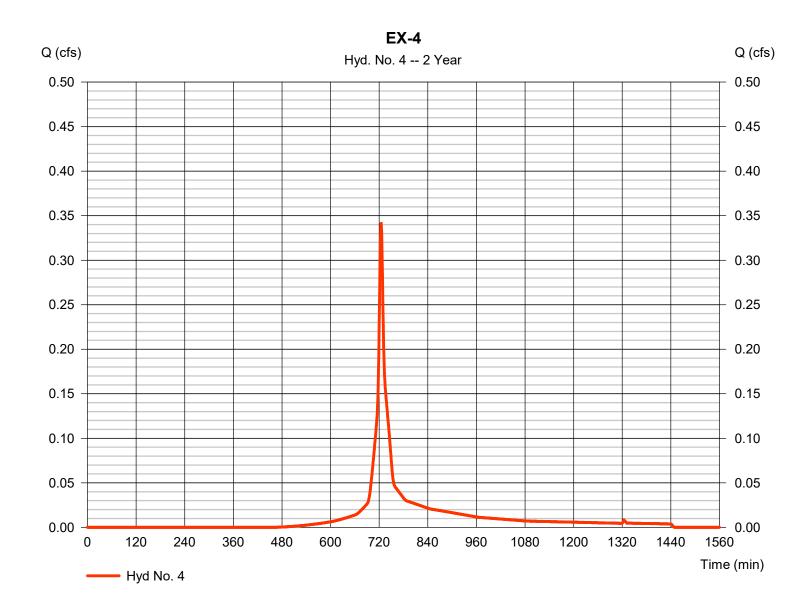

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 3

EX-3

Hydrograph type = SCS Runoff Peak discharge = 16.42 cfsStorm frequency = 2 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 54,377 cuftDrainage area Curve number = 5.460 ac= 96 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 3.11 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

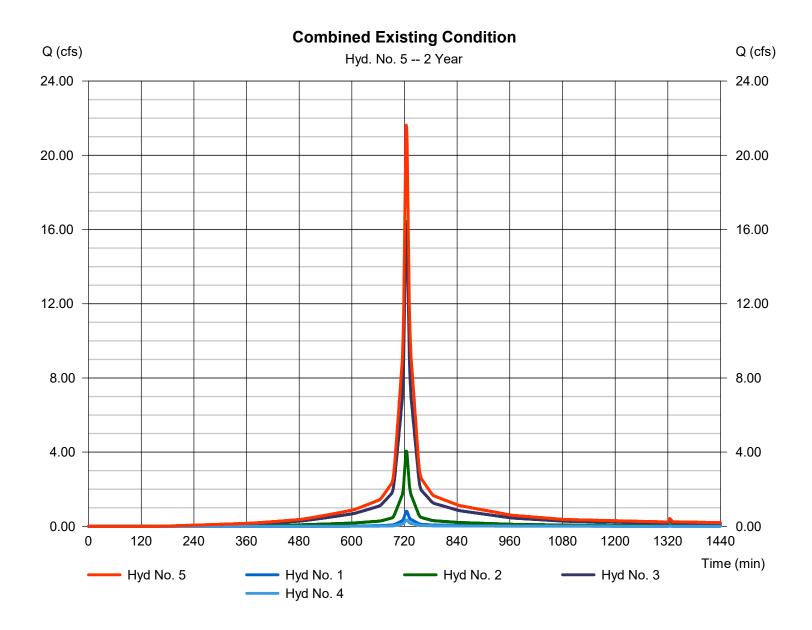

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 4

EX-4

Hydrograph type = SCS Runoff Peak discharge = 0.341 cfsStorm frequency Time to peak = 2 yrs= 725 min Time interval = 1 min Hyd. volume = 1,052 cuftDrainage area Curve number = 0.160 ac= 86 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.11 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 5

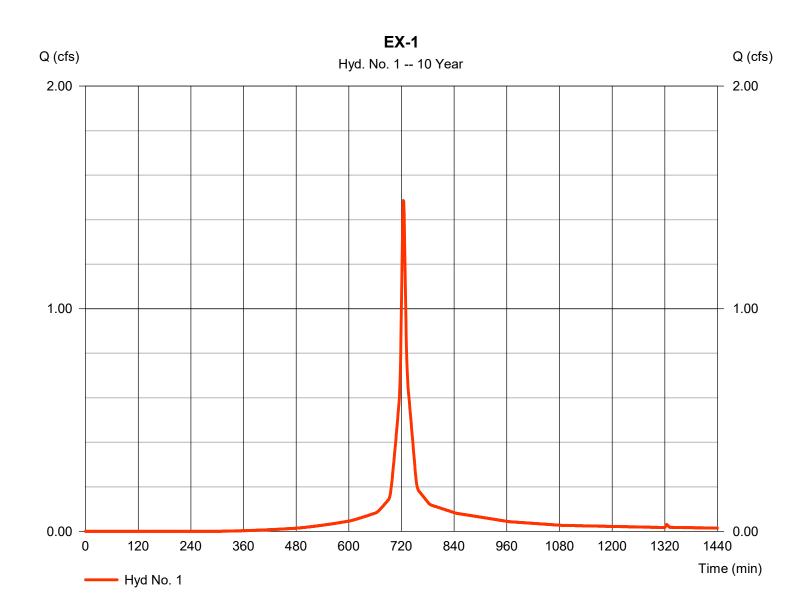
Combined Existing Condition

Hydrograph type = Combine Peak discharge = 21.63 cfsStorm frequency Time to peak = 2 yrs= 724 min Time interval = 1 min Hyd. volume = 71,614 cuft Inflow hyds. = 1, 2, 3, 4Contrib. drain. area = 7.290 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.485	1	724	4,695				EX-1
2	SCS Runoff	6.510	1	724	22,520				EX-2
3	SCS Runoff	26.67	1	724	90,814				EX-3
4	SCS Runoff	0.647	1	724	2,026				EX-4
5	Combine	35.31	1	724	120,055	1, 2, 3, 4			Combined Existing Condition
Exi	sting Condition	on.gpw			Return F	Period: 10	⁄ear	Thursday,	04 / 8 / 2021

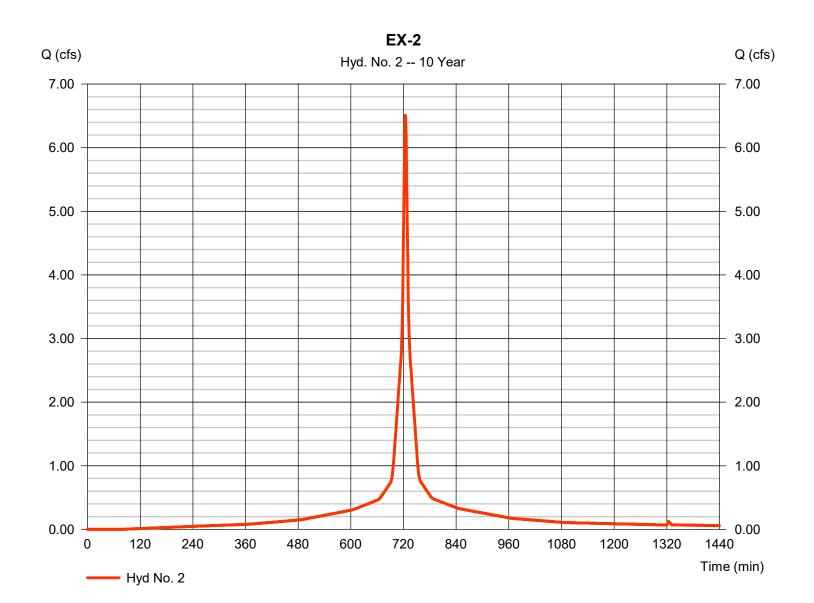

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 1

EX-1

Hydrograph type = SCS Runoff Peak discharge = 1.485 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 4,695 cuft Drainage area Curve number = 0.350 ac= 88 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.91 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

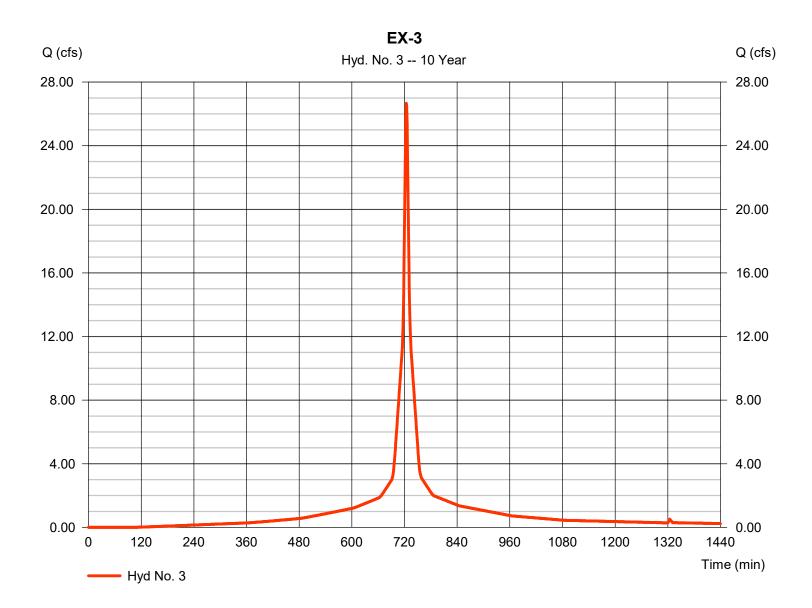

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 2

EX-2

Hydrograph type = SCS Runoff Peak discharge = 6.510 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 22,520 cuftDrainage area = 1.320 acCurve number = 97 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.91 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

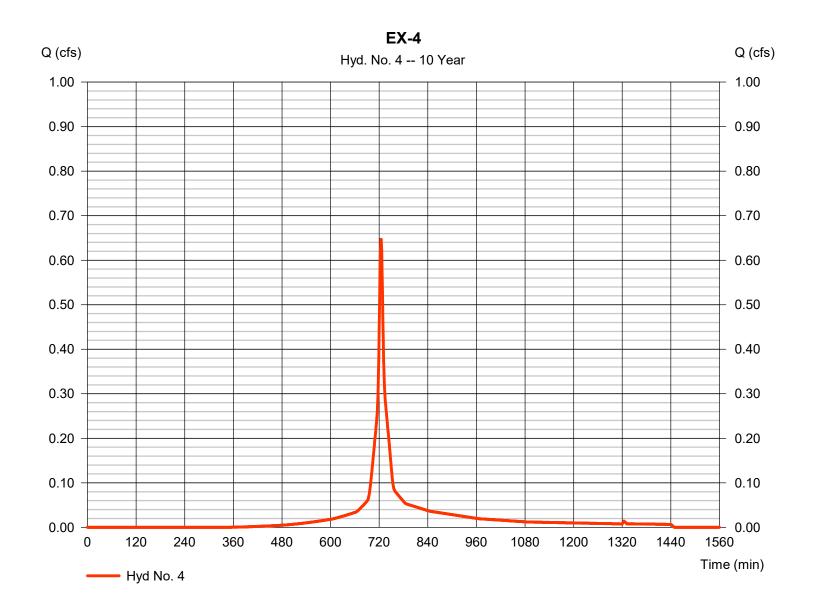

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 3

EX-3

Hydrograph type = SCS Runoff Peak discharge = 26.67 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 90,814 cuft Drainage area Curve number = 5.460 ac= 96 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 4.91 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

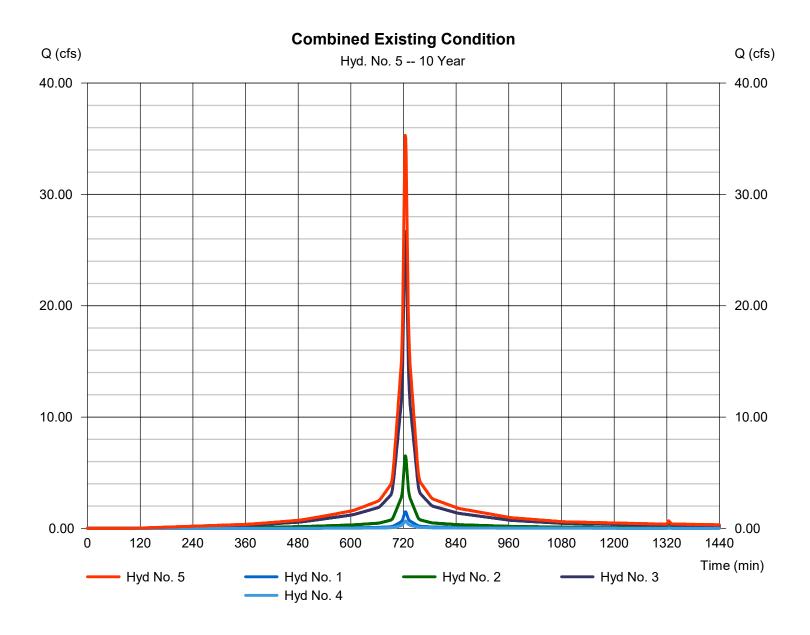

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 4

EX-4

Hydrograph type = SCS Runoff Peak discharge = 0.647 cfsStorm frequency = 10 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 2,026 cuftDrainage area Curve number = 0.160 ac= 86 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.91 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 5

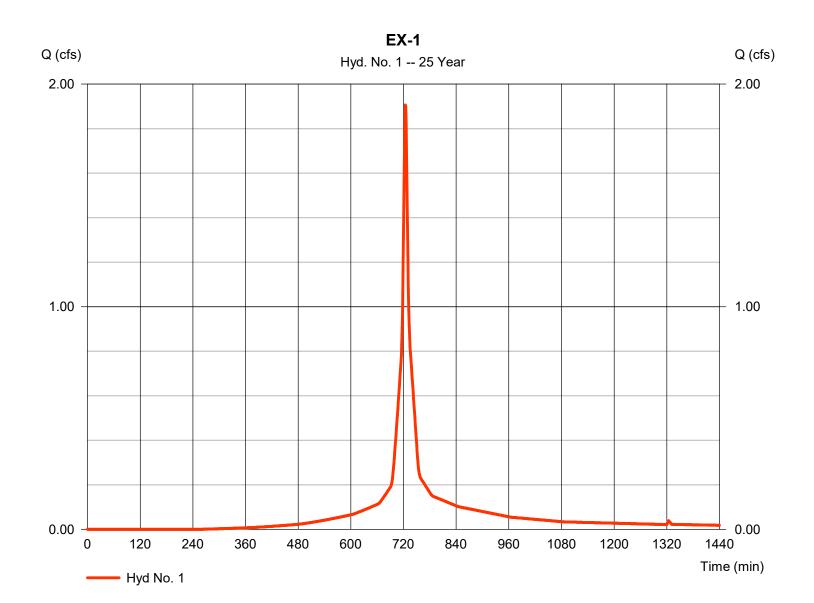
Combined Existing Condition

Hydrograph type = Combine Peak discharge = 35.31 cfsStorm frequency Time to peak = 10 yrs= 724 min Time interval = 1 min Hyd. volume = 120,055 cuft Inflow hyds. = 1, 2, 3, 4Contrib. drain. area = 7.290 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.906	1	724	6,099				EX-1
2	SCS Runoff	8.029	1	724	28,038				EX-2
3	SCS Runoff	32.99	1	724	113,586				EX-3
4	SCS Runoff	0.840	1	724	2,658				EX-4
5	Combine	43.76	1	724	150,381	1, 2, 3,			Combined Existing Condition
Exi	sting Condition	on.gpw		1	Return F	Period: 25 \	⊥ ∕ear	Thursday,	04 / 8 / 2021

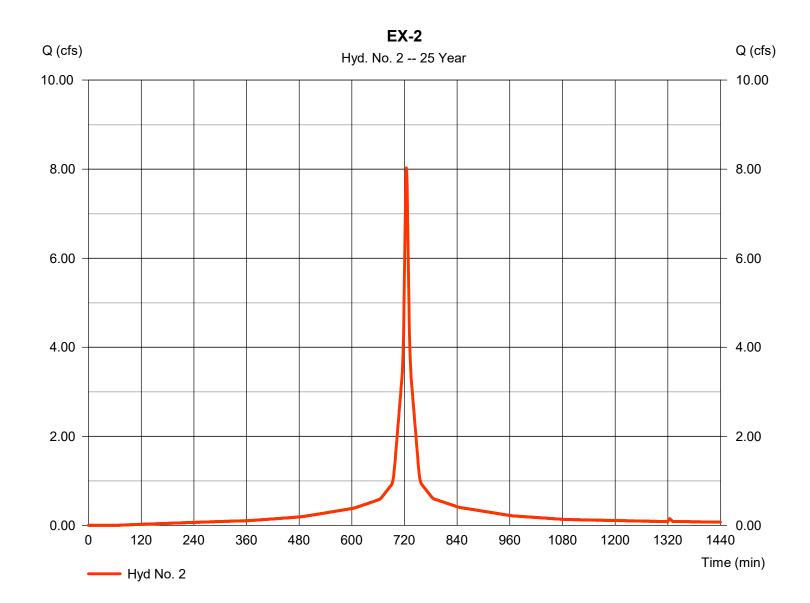

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 1

EX-1

= SCS Runoff Hydrograph type Peak discharge = 1.906 cfsStorm frequency = 25 yrs Time to peak = 724 min Time interval = 1 min Hyd. volume = 6,099 cuftDrainage area = 0.350 acCurve number = 88 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.03 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

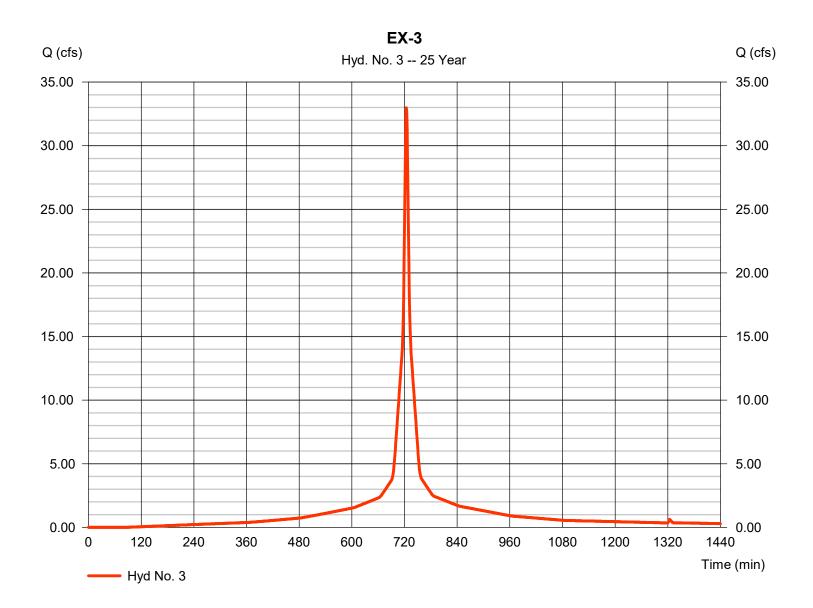

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 2

EX-2

Hydrograph type = SCS Runoff Peak discharge = 8.029 cfsStorm frequency = 25 yrs Time to peak = 724 min Time interval = 1 min Hyd. volume = 28,038 cuft Drainage area = 1.320 acCurve number = 97 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.03 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

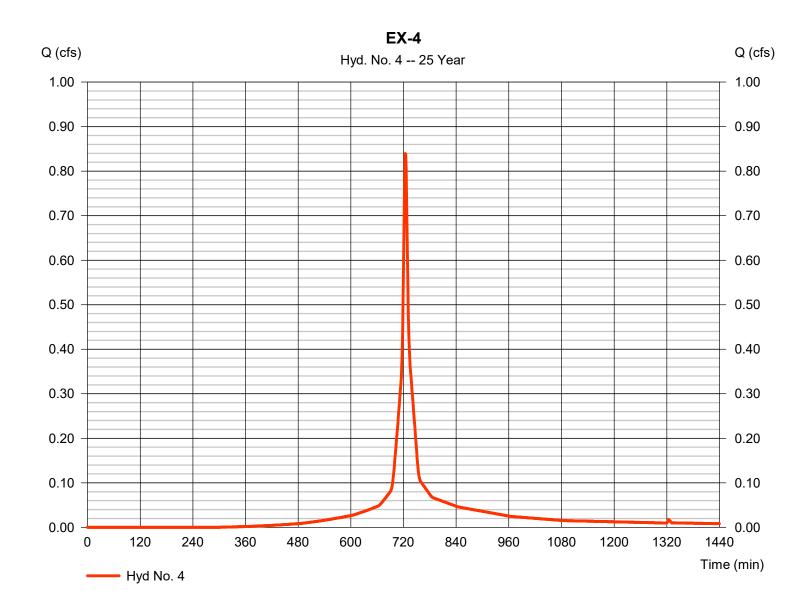

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 3

EX-3

Hydrograph type = SCS Runoff Peak discharge = 32.99 cfsStorm frequency = 25 yrs Time to peak = 724 min Time interval = 1 min Hyd. volume = 113,586 cuft Drainage area = 5.460 acCurve number = 96 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 6.03 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

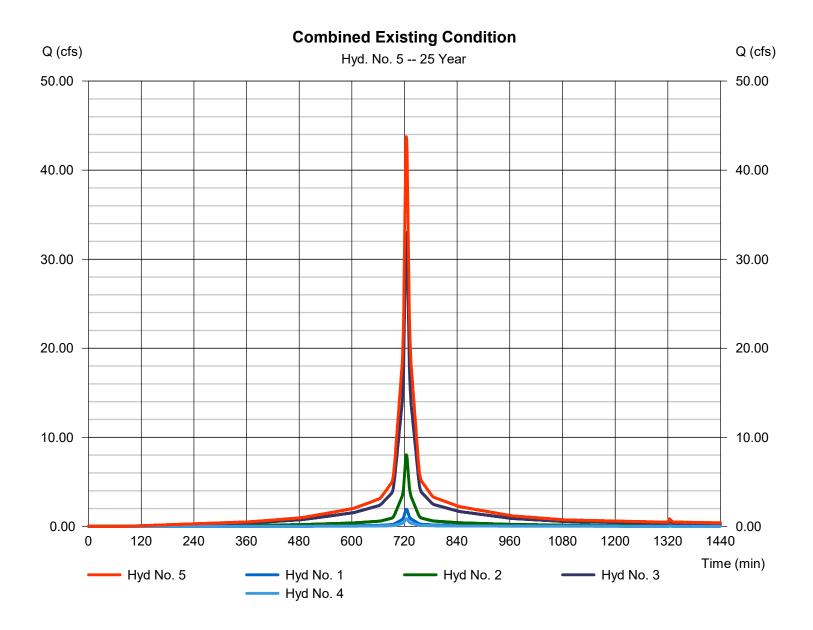

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 4

EX-4

Hydrograph type = SCS Runoff Peak discharge = 0.840 cfsStorm frequency = 25 yrs Time to peak = 724 min Time interval = 1 min Hyd. volume = 2,658 cuftDrainage area Curve number = 0.160 ac= 86 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.03 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 5

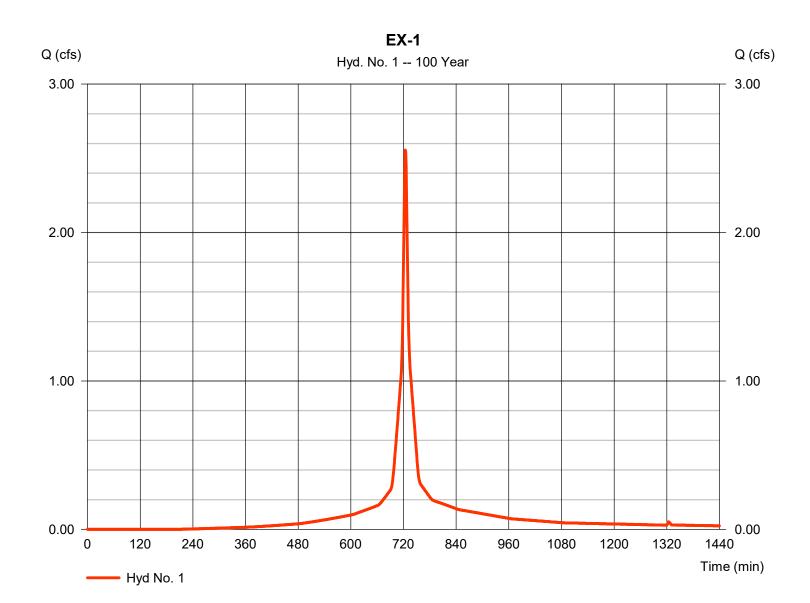
Combined Existing Condition

Hydrograph type = Combine Peak discharge = 43.76 cfsStorm frequency = 25 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 150,381 cuft = 1, 2, 3, 4Contrib. drain. area = 7.290 acInflow hyds.

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.556	1	724	8,311				EX-1
2	SCS Runoff	10.38	1	724	36,619				EX-2
3	SCS Runoff	42.76	1	724	149,031				EX-3
4	SCS Runoff	1.138	1	724	3,659				EX-4
5	Combine	56.84	1	724	197,620	1, 2, 3, 4			Combined Existing Condition
Exi	sting Condition	n.gpw			Return F	Period: 100	Year	Thursday,	04 / 8 / 2021

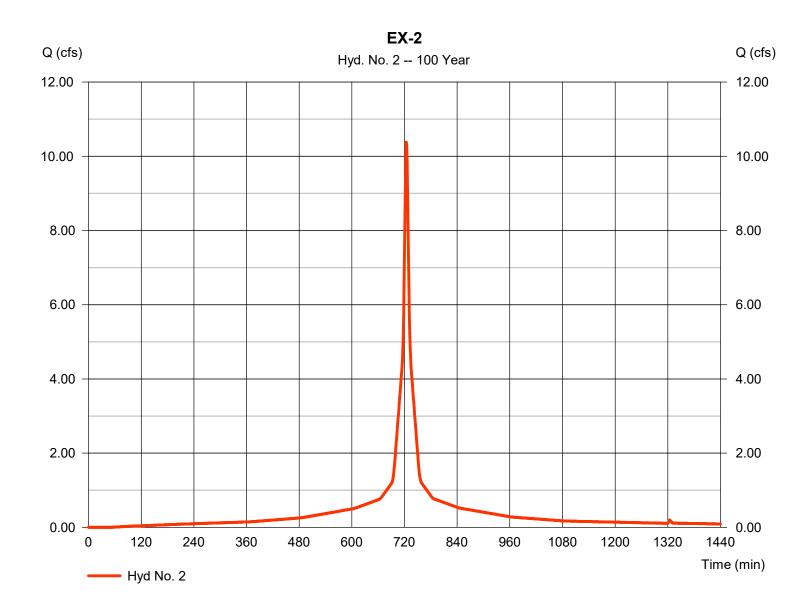

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 1

EX-1

Hydrograph type = SCS Runoff Peak discharge = 2.556 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 8,311 cuft Drainage area Curve number = 0.350 ac= 88 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.77 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

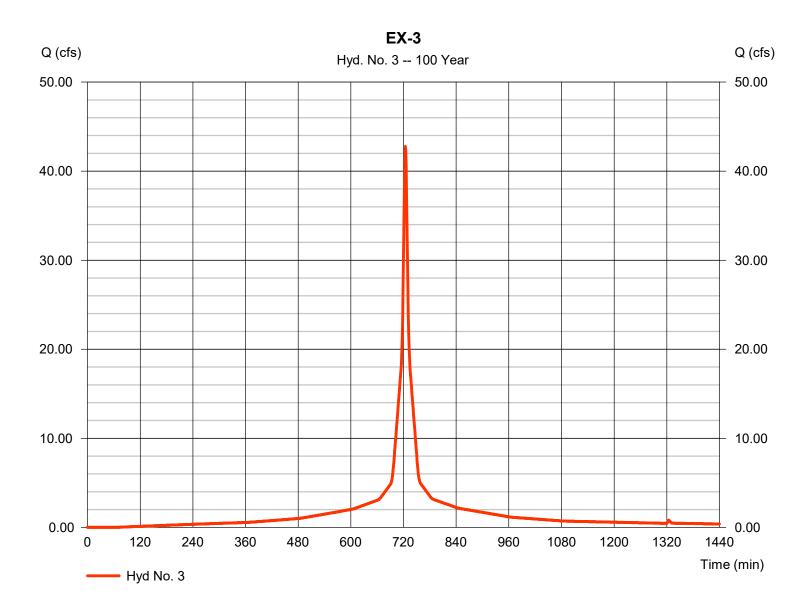

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 2

EX-2

Hydrograph type = SCS Runoff Peak discharge = 10.38 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 36.619 cuft Drainage area = 1.320 acCurve number = 97 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.77 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

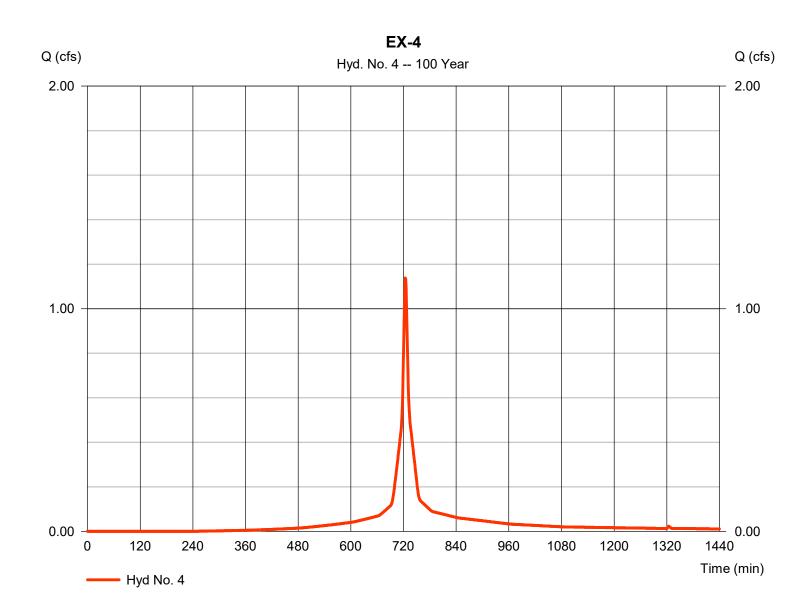

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 3

EX-3

= 42.76 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency = 100 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 149,031 cuft Drainage area Curve number = 5.460 ac= 96 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 6.00 \, \text{min}$ = User Total precip. = 7.77 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

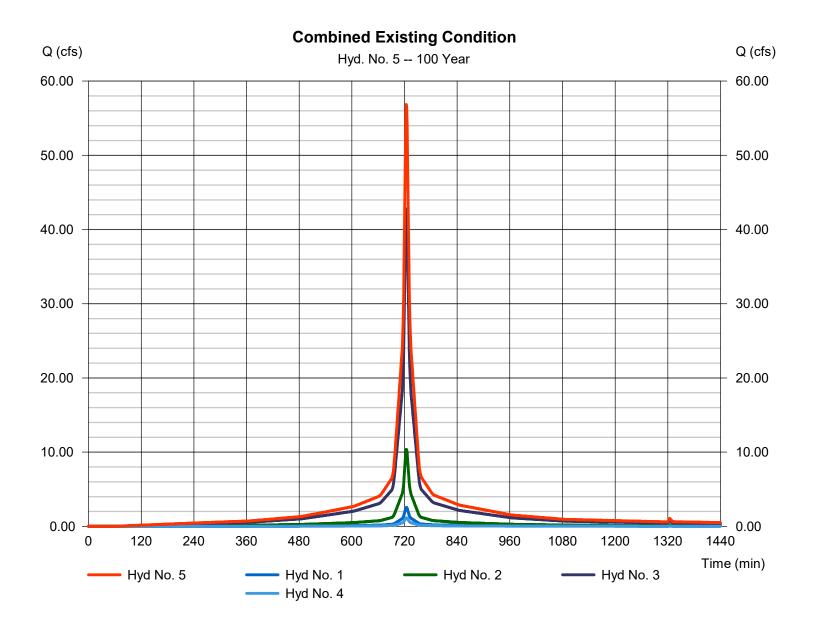

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 4

EX-4

Hydrograph type = SCS Runoff Peak discharge = 1.138 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 3,659 cuftDrainage area Curve number = 0.160 ac= 86 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.77 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 04 / 8 / 2021

Hyd. No. 5

Combined Existing Condition

Hydrograph type = Combine Peak discharge = 56.84 cfsStorm frequency = 100 yrsTime to peak = 724 min Time interval = 1 min Hyd. volume = 197,620 cuft Inflow hyds. = 1, 2, 3, 4Contrib. drain. area = 7.290 ac

APPENDIX B

Proposed Stormwater Discharge Calculations

Project	Evergreen Walk		Ву	IJAB	Date	4/7/2021	_	
Location	South Windsor, CT		Checked	DTG	Date	4/7/2021	_	
Circle One:	Present Developed						_	
Circle One:	T_{c} T_{t} through	subarea		Р	R-1		-	
	e for as many as two segment ksheet.	s per flow ty	pe can be	used for	each			
Inc	lude a map, schematic, or de	scription of	flow segm	ents.				
Sheet flow ((Applicable to T _c Only)	Se	gment ID	АВ]	
1. Surface	description (table 3-1)			Short Grass Prairie				
2. Manning'	s roughness coeff., n (table	e 3-1)		0.15				
3. Flow Len	igth, L (total L \leq 150 ft)		ft	50				
4. Two-yr 2	4-hr rainfall, P ₂		in	3.1				
5. Land slo	ope, s		ft/ft	0.069				
6. $T_t = 0.0$	007 (nL) ^{0.8}	Compute T_t	hr	0.058		+	_	0.058
r	5		•				7	
Shallow conc	centrated flow	Se	gment ID	вс				
7. Surface	description (paved or unpave	ed)		Unpaved				
8. Flow len	gth, L		ft	20				
9. Watercou	erse slope, s		ft/ft	0.065				
10. Average	velocity, V (figure 3-1)		ft/s	4.1	_			
11. T _t =	L 3600 V	Compute T _t	hr	0.001		+] = [0.001
Channel flow	<u> </u>	Se	gment ID					
12. Cross se	ectional flow area, a		ft ²					
13. Wetted p	perimeter, p _w		ft					
14. Hydrauli	c radius, r $r = \frac{a}{p_w}$	Compute r	ft					
15. Channel	slope, s		ft/ft					
	s roughness coeff., n							
17. V =	$\frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$	Compute V	ft/s					
18. Flow len			ft				-	
19. T _t =	L 3600 V	Compute T_t	hr	+		0.000		
	ed or subarea T_c or T_t (add T_c	in steps 6,	11, 19)			0.059	hr	
				Use Tc=	= 5	min		

Project	Evergreen Walk		_ву	IJAB	Date	4/7/2021		
Location	South Windsor, CT		Checked	DTG	Date	4/7/2021		
Circle One:	Present (Developed)							
Circle One:	T_c T_t through s	subarea		Р	R-2		-	
	e for as many as two segments ksheet.	per flow typ	pe can be	used for	each			
Inc	lude a map, schematic, or des	cription of	flow segm	ents.			_	
Sheet flow ((Applicable to T_c Only)	Seg	gment ID	АВ				
1. Surface	description (table 3-1)			Asphalt				
2. Manning'	s roughness coeff., n (table	3-1)	ļ	0.01				
3. Flow Len	gth, L (total L \leq 150 ft)		ft	50				
4. Two-yr 2	4-hr rainfall, P ₂		in	3.1				
5. Land slo	pe, s		ft/ft	0.017	1			
6. $T_t = 0.0$	007 (nL) ^{0.8}	Compute T _t	hr	0.013	+	+	=	0.013
1	. 2 3		ı			.	1	
Shallow conc	centrated flow	Seg	gment ID	вс	CD			
7. Surface	description (paved or unpaved	l)		Paved	Paved			
8. Flow len	gth, L		ft	74	103			
9. Watercou	rse slope, s		ft/ft	0.017	0.016			
10. Average	velocity, V (figure 3-1)		ft/s	2.7	2.6		▎┌	
11. T _t =	L 3600 V	Compute $T_{\rm t}$	hr	0.008	0.011	+] = [0.019
Channel flow	<u>.</u>	Seg	gment ID	DE				
12. Cross se	ctional flow area, a		ft²					
13. Wetted p	perimeter, p _w		ft					
14. Hydrauli	c radius, r $r = \frac{a}{p_w}$	Compute r	ft					
15. Channel	slope, s		ft/ft	0.010				
=	s roughness coeff., n			0.011				
17. V =	$\frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$	Compute V	ft/s	5.00				
18. Flow len			ft	494			1	
19. T _t =	3600 V	Compute $T_{\rm t}$	hr	0.027	+	= 0.027		
20. Watershe	ed or subarea T_c or T_t (add T_t	in steps 6,					hr	
				Use Tc:	= 5	min		

Project	Evergreen Walk		Ву	IJAB	Date	4/7/2021		
Location	South Windsor, CT		Checked	DTG	Date	4/7/2021	ı	
Circle One:	Present Developed							
Circle One:	T_c T_t through substituting the substitution T_t	oarea		Р	R-3		i	
	e for as many as two segments poksheet.	er flow typ	e can be	used for	each			
Inc	lude a map, schematic, or descr	ciption of	flow segm	ents.			_	
Sheet flow ((Applicable to T_c Only)	Seg	ment ID	AB	ВС			
1. Surface	description (table 3-1)			Short Grass Prairie	Asphalt			
2. Manning'	s roughness coeff., n (table 3-	-1)		0.15	0.01			
3. Flow Len	gth , L (total L \leq 150 ft)		ft	8	36			
4. Two-yr 2	4-hr rainfall, P ₂		in	3.1	3.1			
5. Land slo	pe, s		ft/ft	0.130	0.020		 	
6. T _t = 0.0	$\frac{007 (\text{nL})^{0.8}}{2^{0.5} \text{s}^{0.4}}$	Compute T _t	hr	0.010	0.008	+	0.01	9
	-		İ				İ	
Shallow conc	centrated flow	Seg	ment ID					
7. Surface	description (paved or unpaved)			Unpaved				
8. Flow len	gth, L		ft					
9. Watercou	rse slope, s		ft/ft					
10. Average	velocity, V (figure 3-1)		ft/s					_
11. T _t =	L 3600 V	Compute T _t	hr	+		+	0.00	0
Channel flow	<u> </u>	Seg	ment ID	CD				
12. Cross se	ctional flow area, a		${\sf ft}^2$					
13. Wetted p	erimeter, p _w		ft					
14. Hydrauli	c radius, r $r = \frac{a}{p_w}$	Compute r	ft					
15. Channel	slope, s		ft/ft	0.010				
-	s roughness coeff., n			0.011				
17. V =	$\frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$	Compute V	ft/s	5.00				
18. Flow len			ft	769	•		Ī	
19. T _t =	3600 V	Compute T _t	hr	0.043		0.043		
20. Watershe	ed or subarea T_c or T_t (add T_t in	n steps 6,	11, 19)			0.062	hr	
				Use Tc=	= 5	min		

Project	Evergreen Walk		ву _	IJAB	Date	4/7/2021	_	
Location	South Windsor, CT		Checked _	DTG	Date	4/7/2021	_	
Circle One:	Present Developed						_	
Circle One:	T_c T_t through subar	ea		F	PR-4		_	
	e for as many as two segments per ksheet.	flow type	can be	used for	each			
Inc	lude a map, schematic, or descrip	tion of f	low segm	ents.				
Sheet flow ((Applicable to T _c Only)	Segn	nent ID	АВ				
1. Surface	description (table 3-1)			Short Grass Prairie				
2. Manning'	s roughness coeff., n (table 3-1)			0.15				
3. Flow Len	gth, L (total L \leq 150 ft)		ft	50				
4. Two-yr 2	4-hr rainfall, P ₂		in	3.1				
5. Land slo	pe, s		ft/ft	0.015		 	┨	
6. $T_t = 0.0$	$\frac{007 (nL)^{0.8}}{2^{0.5} s^{0.4}}$ Com	pute T _t	hr	0.107	+	+	_ = _	0.107
Shallow conc	centrated flow	Segn	nent ID	вс]	
7. Surface	description (paved or unpaved)		ļ	Unpaved				
8. Flow len	gth, L		ft	48				
9. Watercou	rse slope, s		ft/ft	0.053				
10. Average	velocity, V (figure 3-1)		ft/s	3.7		<u> </u>	┨ ┌	
11. T _t =	L Com	pute T _t	hr	0.004	+	+] = [0.004
Channel flow	<u>.</u>	Segn	nent ID					
12. Cross se	ctional flow area, a		ft²					
13. Wetted p	perimeter, p _w		ft					
14. Hydrauli	c radius, r $r = \frac{a}{p_w}$ Com	pute r	ft					
15. Channel	slope, s		ft/ft			-		
16. Manning'	s roughness coeff., n							
17. V =	$\frac{1.49 \text{ r}^{2/3} \text{ s}^{1/2}}{\text{n}}$ Com	pute V	ft/s					
18. Flow len			ft			ļ _— ——	7	
19. $T_t = \frac{1}{2}$	<u>L</u> 3600 V Com	pute T _t	hr		+	0.000		
20. Watershe	d or subarea T_c or T_t (add T_t in s	teps 6, 1				0.110	hr	
				Use Tc	= 7	min		

Composite Curve Number Calculations

TR-55 Reference Table

Abbreviated TR-55 Table 2-2a Runoff Curve Numbers for Urban Areas

Cover Description	Curve N		Hydrologic S ISG)	Soil Group
Fully Developed Urban Areas	А	В	С	D
Pervious Area				
Open Space - Lawns, Parks, and Cemeteries	68	79	86	89
Woods and Forest	30	55	70	77
Slectively Cleared Woods and Forest	43	65	76	82
Impervious Area				
Paved Areas and Roofs	98	98	98	98
Gravel Roads	76	85	89	91
Dirt Roads	72	82	87	89
Developing Urban Areas				
Newly Graded Pervious Areas	77	86	91	94

Composite Runoff Curve Number Calculation

Composite CN =
$$\frac{\sum_{i=1}^{n} CN_{i} \times A_{i}}{\sum_{i=1}^{n} A_{i}}$$

Cover Description	HSG	CN	Area (ft ²)	CN × A
Newly Graded Pervious Areas	В	86	15,324	1,317,864
Paved Areas and Roofs	В	98	1,793	175,714
				0
				0
				0
	·	Total	17,117	1,493,578

EVERGREEN WALK	BY	HES	
EVERGREEN WALK	DATE	3/12/2021	LANGAN PROJ. NUMBER: 140222801
SOUTH WINDSOR OT	CKD	JEL	
SOUTH WINDSOR, CT	DATE	3/12/2021	

Composite Curve Number Calculations

TR-55 Reference Table

Abbreviated TR-55 Table 2-2a Runoff Curve Numbers for Urban Areas

Cover Description	Curve Numbers for Hydrologic Soil Group (HSG)						
Fully Developed Urban Areas	А	D					
Pervious Area							
Open Space - Lawns, Parks, and Cemeteries	68	79	86	89			
Woods and Forest	30	55	70	77			
Slectively Cleared Woods and Forest	43	65	76	82			
Impervious Area							
Paved Areas and Roofs	98	98	98	98			
Gravel Roads	76	85	89	91			
Dirt Roads	72	82	87	89			
Developing Urban Areas							
Newly Graded Pervious Areas	77	86	91	94			

Composite Runoff Curve Number Calculation

Composite CN =
$$\frac{\sum_{i=1}^{n} CN_{i} \times A_{i}}{\sum_{i=1}^{n} A_{i}}$$

Cover Description	HSG	CN	Area (ft ²)	CN × A
Newly Graded Pervious Areas	В	86	7,677	660,222
Paved Areas and Roofs	В	98	49,975	4,897,550
				0
				0
				0
		Total	57,652	5,557,772

EVERGREEN WALK	BY	HES	
EVENGREEN WALK	DATE	3/12/2021	LANGAN PROJ. NUMBER: 140222801
SOUTH WINDSOR, CT	CKD	JEL	
SOUTH WINDSOR, CT	DATE	3/12/2021	

Composite Curve Number Calculations

TR-55 Reference Table

Abbreviated TR-55 Table 2-2a Runoff Curve Numbers for Urban Areas

Cover Description	Curve Numbers for Hydrologic Soil Group (HSG)					
Fully Developed Urban Areas	А	В	С	D		
Pervious Area						
Open Space - Lawns, Parks, and Cemeteries	68	79	86	89		
Woods and Forest	30	55	70	77		
Slectively Cleared Woods and Forest	43	65	76	82		
Impervious Area						
Paved Areas and Roofs	98	98	98	98		
Gravel Roads	76	85	89	91		
Dirt Roads	72	82	87	89		
Developing Urban Areas						
Newly Graded Pervious Areas	77	86	91	94		

Composite Runoff Curve Number Calculation

Composite CN =
$$\frac{\sum_{i=1}^{n} CN_{i} \times A_{i}}{\sum_{i=1}^{n} A_{i}}$$

Cover Description	HSG	CN	Area (ft ²)	CN × A
Newly Graded Pervious Areas	В	86	32,959	2,834,474
Newly Graded Pervious Areas	С	91	4,937	449,267
Paved Areas and Roofs	В	98	195,896	19,197,808
Gravel Roads	В	85	3,000	255,000
				0
	·	Total	236,792	22,736,549

Composite CN =	96
----------------	----

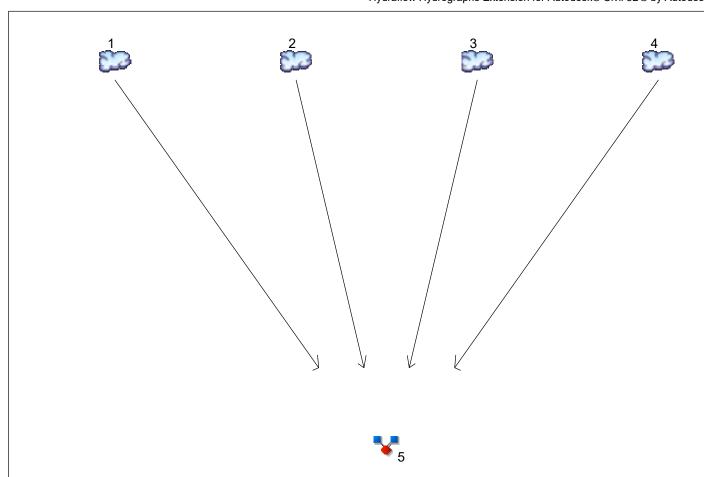
EVERGREEN WALK	BY	HES	
EVERGREEN WALK	DATE	3/12/2021	LANGAN PROJ. NUMBER: 140222801
SOLITH WINDSOD OT	CKD	JEL	
SOUTH WINDSOR, CT	DATE	3/12/2021	

Composite Curve Number Calculations

TR-55 Reference Table

Abbreviated TR-55 Table 2-2a Runoff Curve Numbers for Urban Areas

Cover Description	Curve Numbers for Hydrologic Soil Group (HSG)						
Fully Developed Urban Areas	А	D					
Pervious Area							
Open Space - Lawns, Parks, and Cemeteries	68	79	86	89			
Woods and Forest	30	55	70	77			
Slectively Cleared Woods and Forest	43	65	76	82			
Impervious Area							
Paved Areas and Roofs	98	98	98	98			
Gravel Roads	76	85	89	91			
Dirt Roads	72	82	87	89			
Developing Urban Areas							
Newly Graded Pervious Areas	77	86	91	94			


Composite Runoff Curve Number Calculation

Composite CN =
$$\frac{\sum_{i=1}^{n} CN_{i} \times A_{i}}{\sum_{i=1}^{n} A_{i}}$$

Cover Description	HSG	CN	Area (ft ²)	CN × A
Newly Graded Pervious Areas	В	86	6,954	598,044
				0
				0
				0
				0
		Total	6,954	598,044

EVERGREEN WALK	BY	HES	
EVERGREEN WALK	DATE	3/12/2021	LANGAN PROJ. NUMBER: 140222801
SOUTH WINDSOR, CT	CKD	JEL	
SOUTH WINDSOR, CT	DATE	3/12/2021	

Watershed Model Schematic

Legend

<u>Hyd.</u>	<u>Origin</u>	<u>Description</u>
1	SCS Runoff	PR-1
2	SCS Runoff	PR-2
3	SCS Runoff	PR-3
4	SCS Runoff	PR-4
5	Combine	Combined - Proposed Condition

Project: Proposed Condition.gpw

Wednesday, 04 / 7 / 2021

Hydrograph Return Period Recap

Hyd. No.	Hydrograph	Inflow hyd(s)	Peak Outflow (cfs)							Hydrograph	
10.	type (origin)	nya(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			0.868			1.616	2.086		2.812	PR-1
2	SCS Runoff			3.971			6.447	7.975		10.34	PR-2
3	SCS Runoff			16.33			26.52	32.81		42.53	PR-3
4	SCS Runoff			0.341			0.647	0.840		1.138	PR-4
5	Combine	1, 2, 3, 4		21.51			35.23	43.71		56.81	Combined - Proposed Condition

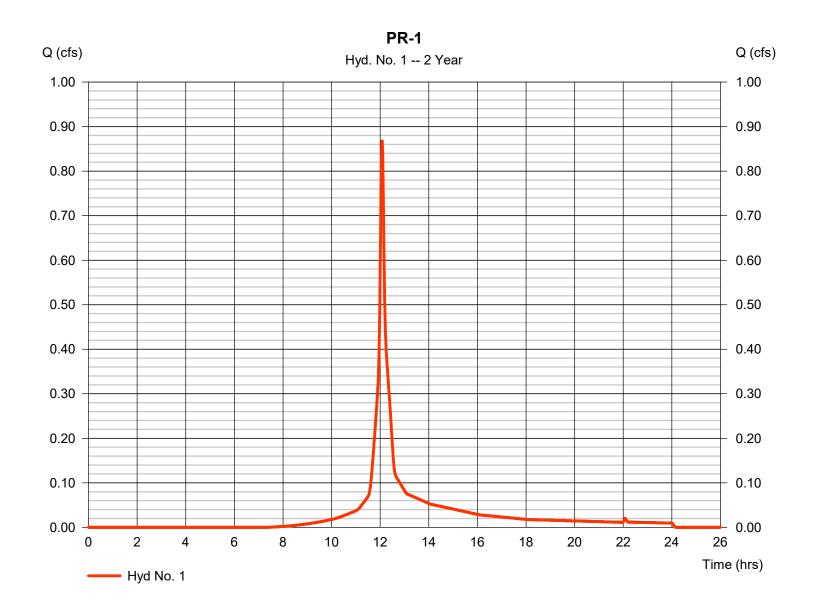
Proj. file: Proposed Condition.gpw

Wednesday, 04 / 7 / 2021

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.868	1	725	2,680				PR-1
2	SCS Runoff	3.971	1	724	13,146				PR-2
3	SCS Runoff	16.33	1	724	54,078				PR-3
4	SCS Runoff	0.341	1	725	1,052				PR-4
5	Combine	21.51	1	724	70,956	1, 2, 3,			Combined - Proposed Condition
Pro	posed Condi	tion.gpw			Return F	Period: 2 Ye	ear	Wednesda	ny, 04 / 7 / 2021

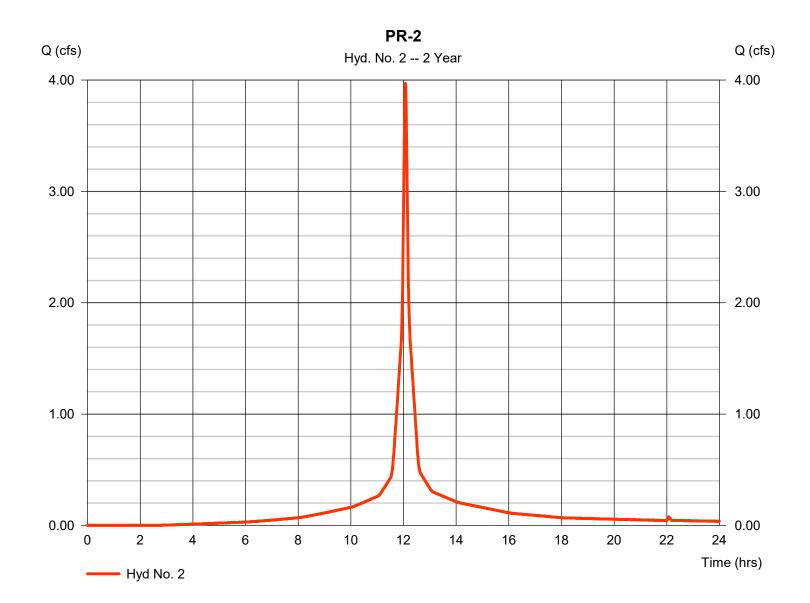

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 1

PR-1

Hydrograph type = SCS Runoff Peak discharge = 0.868 cfsStorm frequency = 2 yrsTime to peak $= 12.08 \, hrs$ Time interval = 1 min Hyd. volume = 2,680 cuftDrainage area Curve number = 0.390 ac= 87 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.11 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

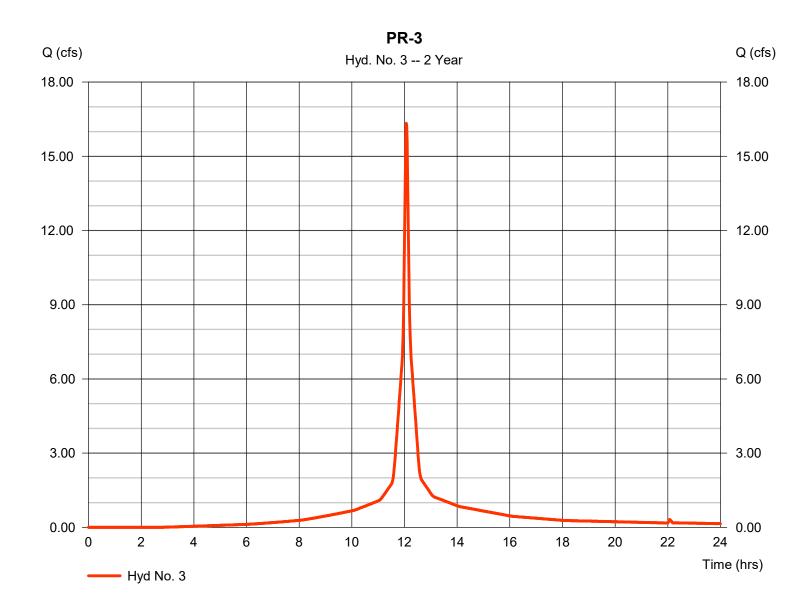

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 2

PR-2

Hydrograph type = SCS Runoff Peak discharge = 3.971 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 1 min Hyd. volume = 13,146 cuft Drainage area = 1.320 acCurve number = 96 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.11 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

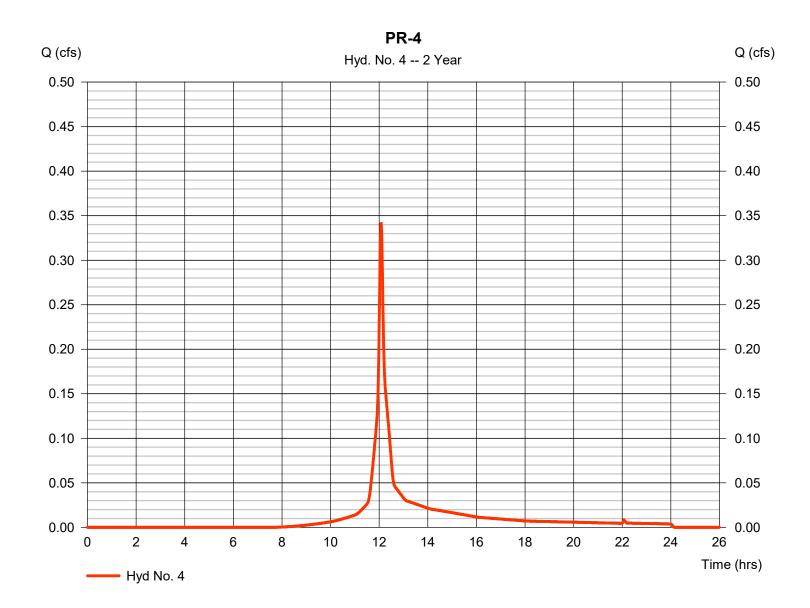

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 3

PR-3

Hydrograph type = SCS Runoff Peak discharge = 16.33 cfsStorm frequency = 2 yrsTime to peak $= 12.07 \, hrs$ Time interval = 1 min Hyd. volume = 54,078 cuftDrainage area = 5.430 acCurve number = 96 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.11 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

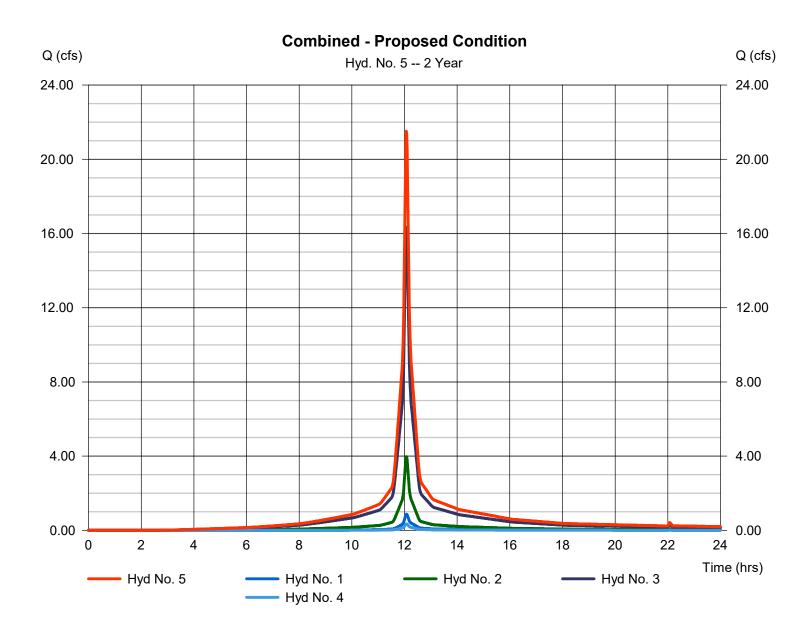

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 4

PR-4

Hydrograph type = SCS Runoff Peak discharge = 0.341 cfsStorm frequency Time to peak = 2 yrs $= 12.08 \, hrs$ Time interval = 1 min Hyd. volume = 1,052 cuftDrainage area Curve number = 0.160 ac= 86 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.11 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 5

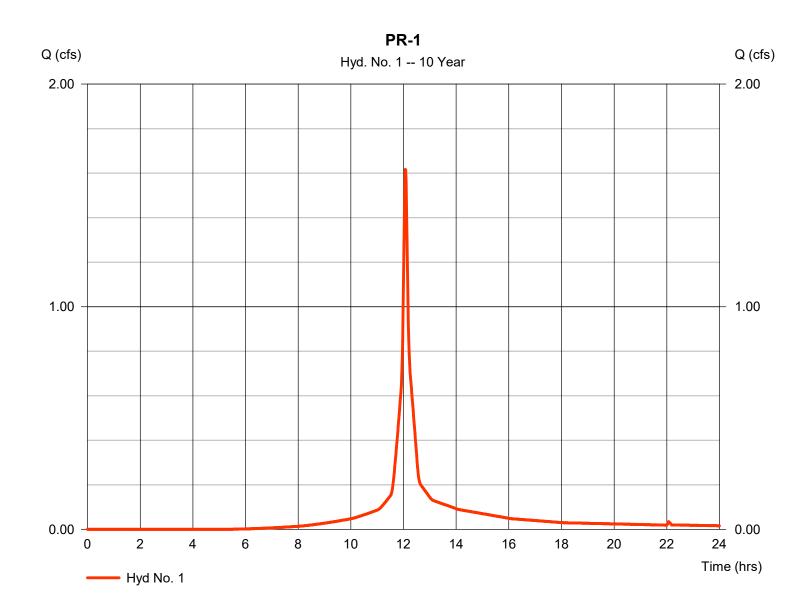
Combined - Proposed Condition

Hydrograph type = Combine Peak discharge = 21.51 cfsStorm frequency Time to peak = 2 yrs $= 12.07 \, hrs$ Time interval = 1 min Hyd. volume = 70,956 cuft Inflow hyds. = 1, 2, 3, 4Contrib. drain. area = 7.300 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.616	1	724	5,084				PR-1
2	SCS Runoff	6.447	1	724	21,955				PR-2
3	SCS Runoff	26.52	1	724	90,314				PR-3
4	SCS Runoff	0.647	1	724	2,026				PR-4
5	Combine	35.23	1	724	119,380	1, 2, 3, 4			Combined - Proposed Condition
Pro	posed Condi	tion.gpw			Return F	Period: 10	⁄ear	Wednesda	y, 04 / 7 / 2021

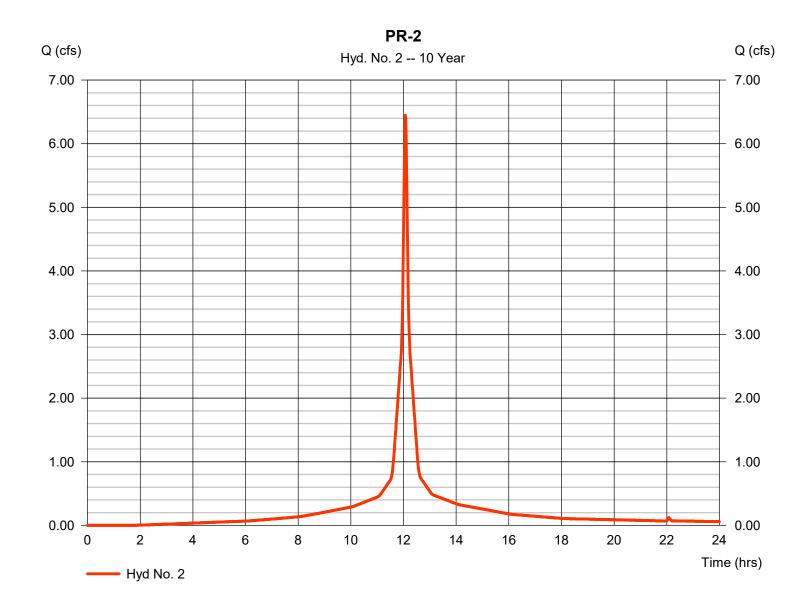

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 1

PR-1

Hydrograph type = SCS Runoff Peak discharge = 1.616 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 1 min Hyd. volume = 5,084 cuftDrainage area Curve number = 0.390 ac= 87 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.91 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 2

PR-2

Hydrograph type = SCS Runoff Peak discharge = 6.447 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 1 min Hyd. volume = 21,955 cuft Drainage area = 1.320 acCurve number = 96 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.91 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

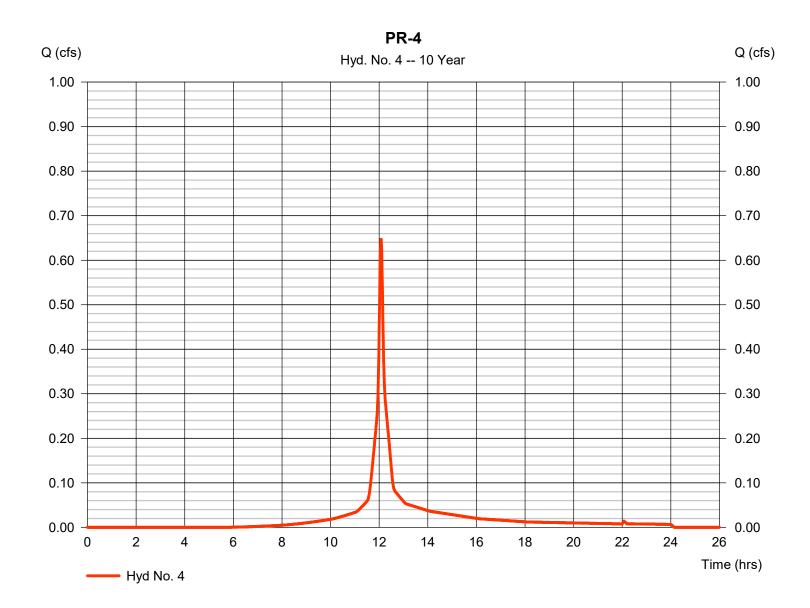
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 3

PR-3

Hydrograph type = SCS Runoff Peak discharge = 26.52 cfsStorm frequency = 10 yrsTime to peak = 12.07 hrsTime interval = 1 min Hyd. volume = 90,314 cuft Drainage area Curve number = 5.430 ac= 96 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.91 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

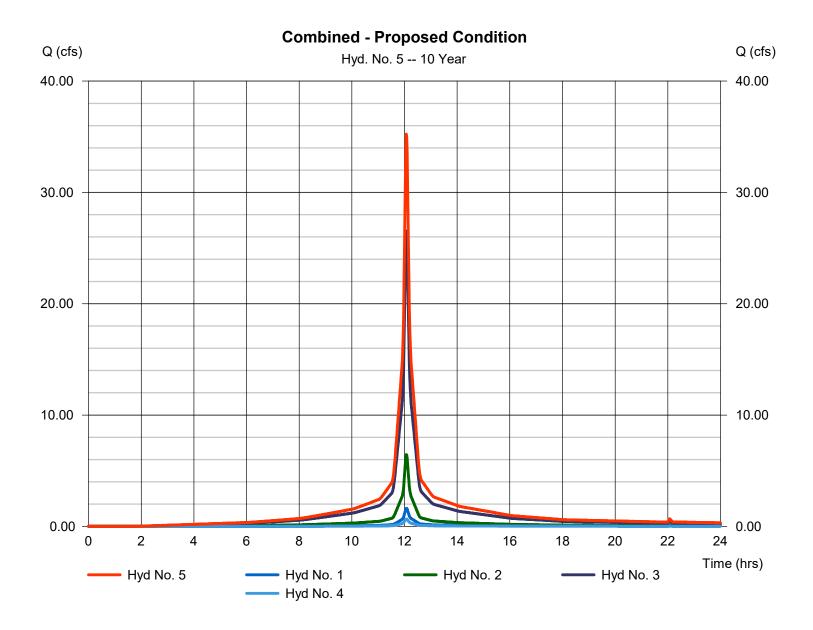

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 4

PR-4

Hydrograph type = SCS Runoff Peak discharge = 0.647 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 1 min Hyd. volume = 2,026 cuftDrainage area Curve number = 0.160 ac= 86 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.91 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 5

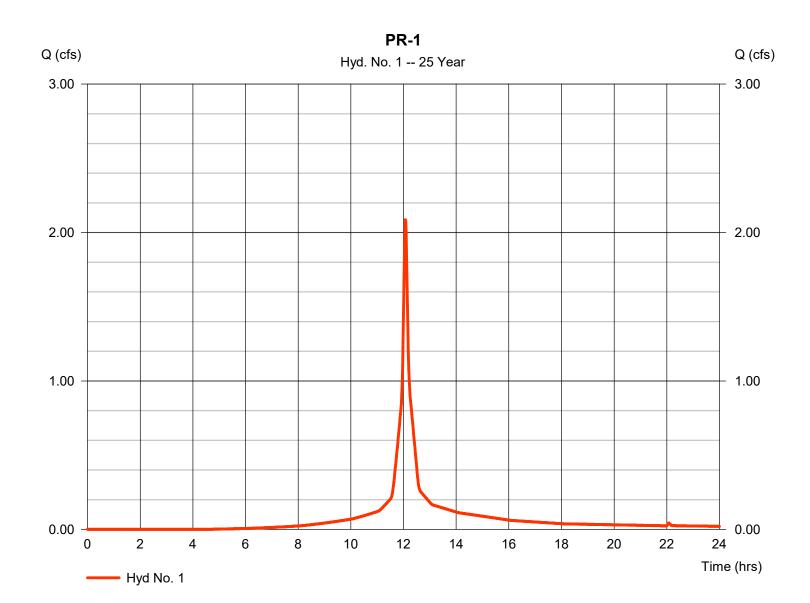
Combined - Proposed Condition

Hydrograph type = Combine Peak discharge = 35.23 cfsStorm frequency Time to peak = 10 yrs= 12.07 hrsTime interval = 1 min Hyd. volume = 119,380 cuft Inflow hyds. = 1, 2, 3, 4Contrib. drain. area = 7.300 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
I	SCS Runoff	2.086	1	724	6,637				PR-1
2	SCS Runoff	7.975	1	724	27,460				PR-2
3	SCS Runoff	32.81	1	724	112,962				PR-3
4	SCS Runoff	0.840	1	724	2,658				PR-4
5	Combine	43.71	1	724	149,717	1, 2, 3, 4			Combined - Proposed Condition
Pro	posed Condi	tion.gpw			Return F	Period: 25 \	/ear	Wednesda	y, 04 / 7 / 2021

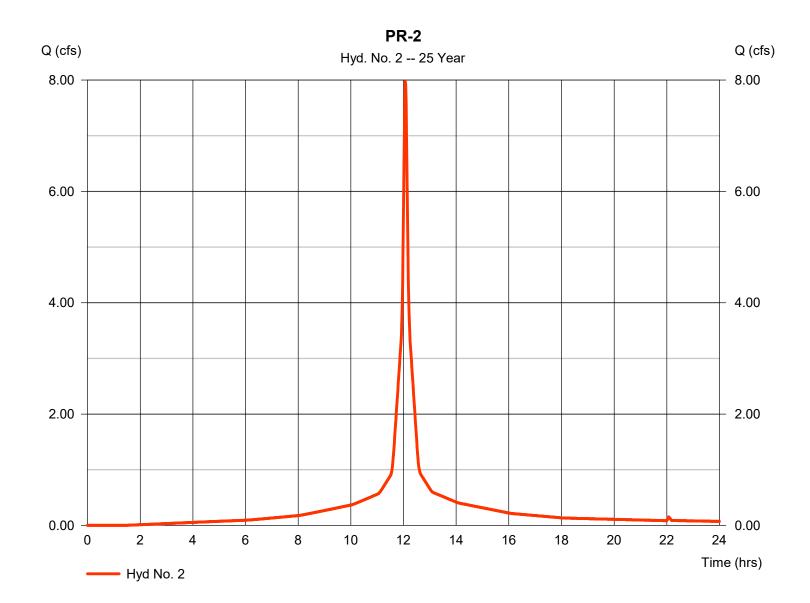

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 1

PR-1

= SCS Runoff Hydrograph type Peak discharge = 2.086 cfsStorm frequency = 25 yrsTime to peak = 12.07 hrsTime interval = 1 min Hyd. volume = 6,637 cuftDrainage area Curve number = 0.390 ac= 87 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.03 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 2

PR-2

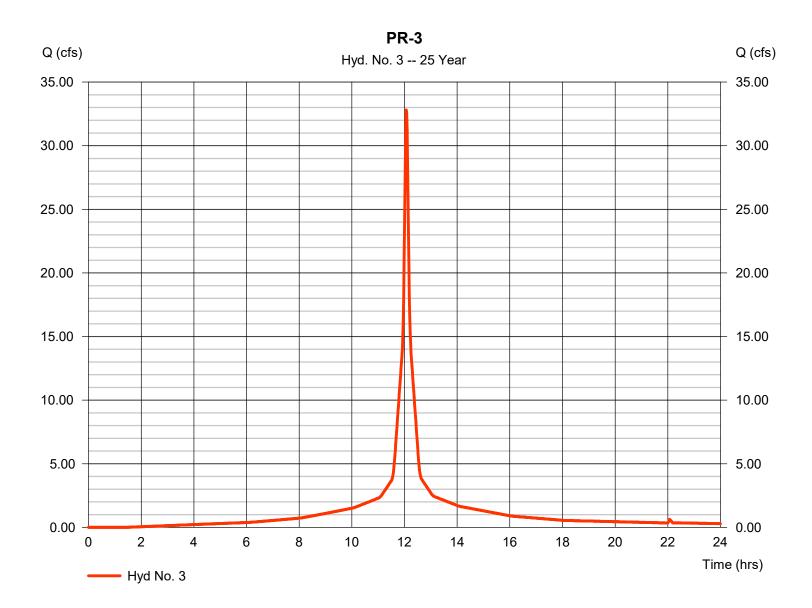
Hydrograph type = SCS Runoff Peak discharge = 7.975 cfsStorm frequency = 25 yrs Time to peak = 12.07 hrsTime interval = 1 min Hyd. volume = 27,460 cuftDrainage area = 1.320 acCurve number = 96 = 0.0 % = 0 ftBasin Slope Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.03 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

= 24 hrs

Wednesday, 04 / 7 / 2021

= 484

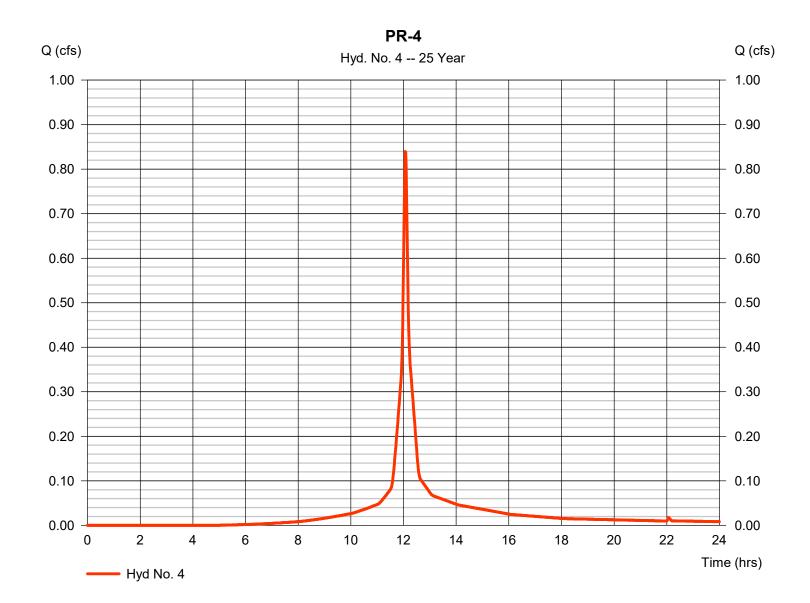

Hyd. No. 3

Storm duration

PR-3

Hydrograph type = SCS Runoff Peak discharge = 32.81 cfsStorm frequency = 25 yrs Time to peak = 12.07 hrsTime interval = 1 min Hyd. volume = 112,962 cuft Drainage area Curve number = 5.430 ac= 96 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.03 inDistribution = Type III

Shape factor

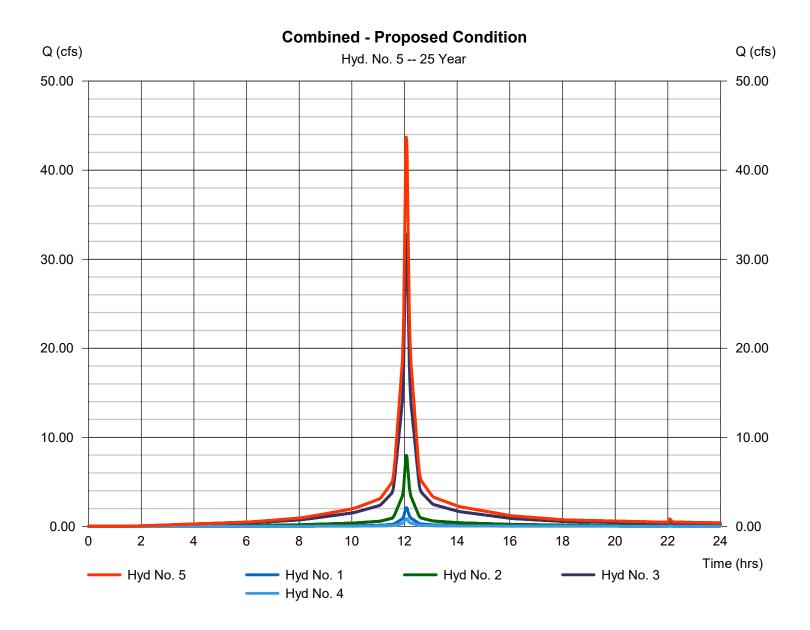

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 4

PR-4

Hydrograph type = SCS Runoff Peak discharge = 0.840 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 1 min Hyd. volume = 2,658 cuftDrainage area Curve number = 0.160 ac= 86 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.03 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 5

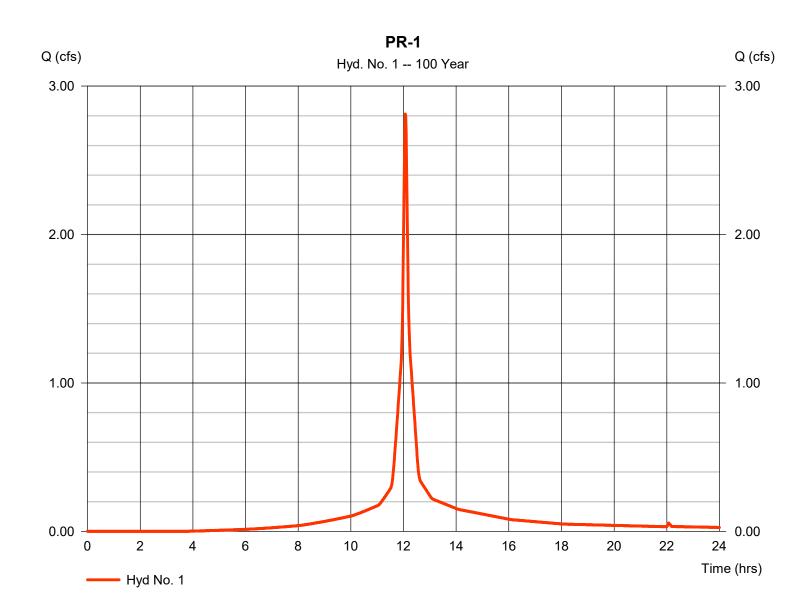
Combined - Proposed Condition

Hydrograph type = Combine Peak discharge = 43.71 cfsStorm frequency = 25 yrsTime to peak = 12.07 hrsTime interval = 1 min Hyd. volume = 149,717 cuft Inflow hyds. = 1, 2, 3, 4Contrib. drain. area = 7.300 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.812	1	724	9,090				PR-1
2	SCS Runoff	10.34	1	724	36,029				PR-2
3	SCS Runoff	42.53	1	724	148,212				PR-3
4	SCS Runoff	1.138	1	724	3,659				PR-4
5	Combine	56.81		724	196,989	1, 2, 3, 4			Combined - Proposed Condition
Pro	posed Condi	tion.apw			Return F	Period: 100	Year	Wednesday	y, 04 / 7 / 2021

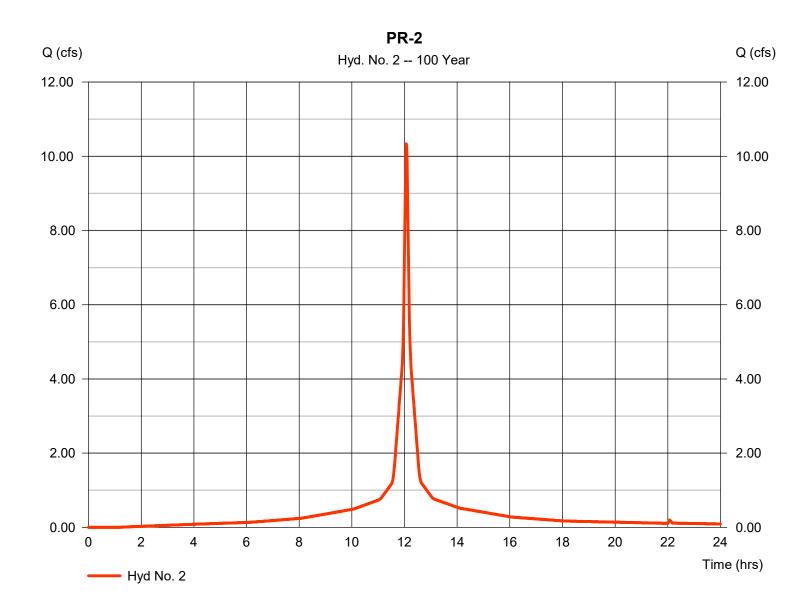

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 1

PR-1

Hydrograph type = SCS Runoff Peak discharge = 2.812 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 1 min Hyd. volume = 9,090 cuftDrainage area Curve number = 0.390 ac= 87 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.77 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

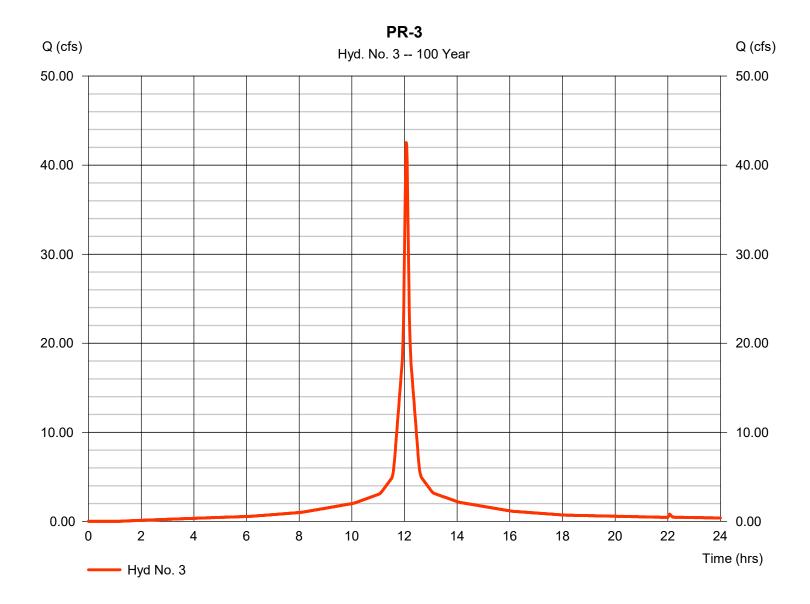
Wednesday, 04 / 7 / 2021

Hyd. No. 2

PR-2

Hydrograph type = SCS Runoff Peak discharge = 10.34 cfsStorm frequency = 100 yrsTime to peak = 12.07 hrsTime interval = 1 min Hyd. volume = 36,029 cuftDrainage area = 1.320 acCurve number = 96 Basin Slope = 0.0 % Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.77 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

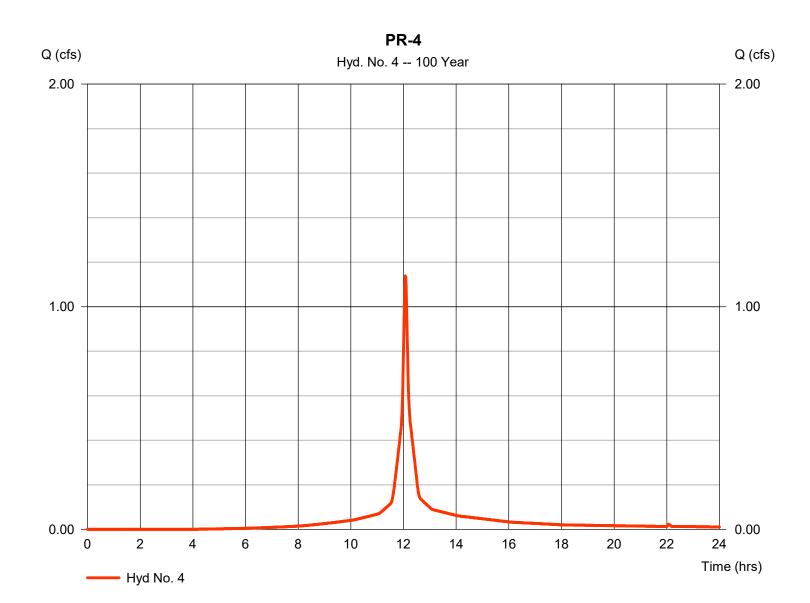

Wednesday, 04 / 7 / 2021

Hyd. No. 3

PR-3

= 42.53 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency = 100 yrsTime to peak = 12.07 hrsTime interval = 1 min Hyd. volume = 148,212 cuft Drainage area Curve number = 5.430 ac= 96

Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.77 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484

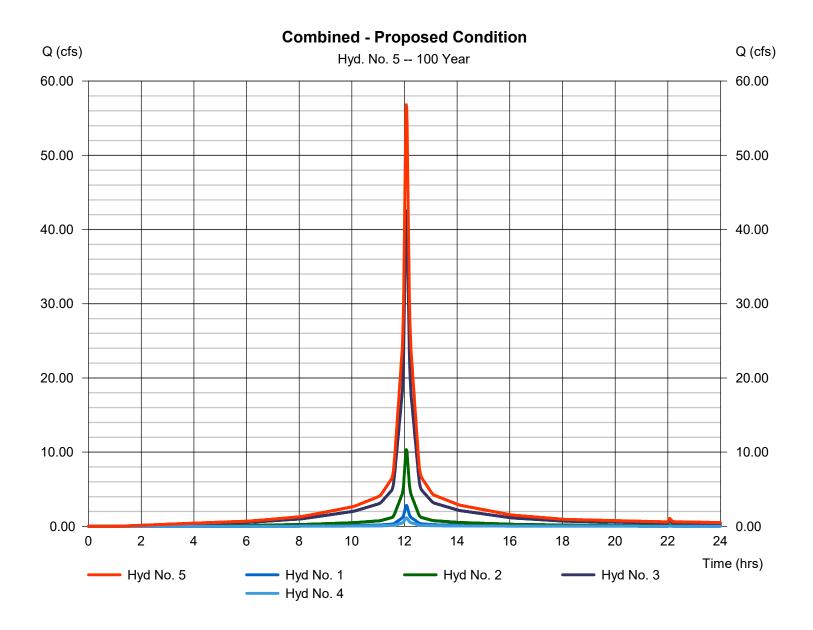

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Wednesday, 04 / 7 / 2021

Hyd. No. 4

PR-4

= SCS Runoff Hydrograph type Peak discharge = 1.138 cfsStorm frequency = 100 yrsTime to peak $= 12.07 \, hrs$ Time interval = 1 min Hyd. volume = 3,659 cuftDrainage area Curve number = 0.160 ac= 86 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.77 inDistribution = Type III Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

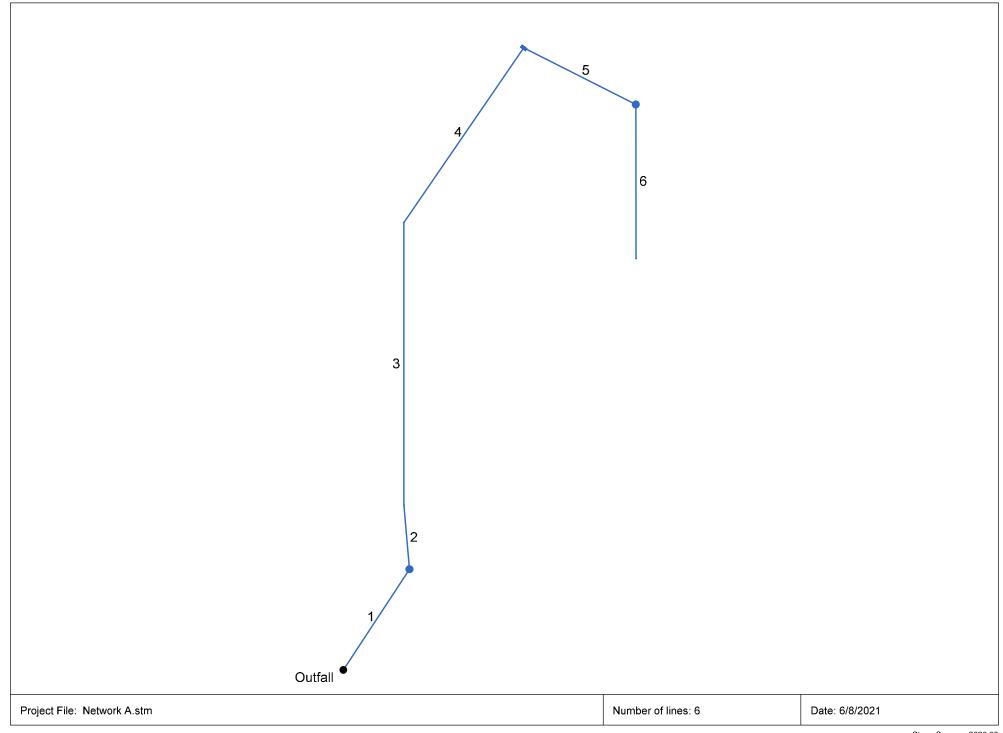
Wednesday, 04 / 7 / 2021

Hyd. No. 5

Combined - Proposed Condition

Hydrograph type = Combine Peak discharge = 56.81 cfsStorm frequency = 100 yrsTime to peak = 12.07 hrsTime interval = 1 min Hyd. volume = 196,989 cuft Inflow hyds. = 1, 2, 3, 4Contrib. drain. area = 7.300 ac

APPENDIX C


Stormwater Collection System Calculations

Project	EVERGREEN WALK	Ву	IJAB	Date	3/10/2021
Location	South Windsor, CT	Checked_	JEL	Date	3/10/2021
Circle one:	Present (Developed)	Job No.	1402228	801	

1. Rational 'C' Runoff Coefficient & Area Calculations

Catchment Area	Total /	Area	Imperviou	ıs (C=.9)	Pervio	us (C=0.3)	Percent Impervious	С
	SF	AC	SF	AC	SF	AC	mporvious	
CCB A-1	20,076	0.461	17,625	0.405	2,451	0.056	88%	0.83
CCB A-2	26,673	0.612	22,476	0.516	4,197	0.096	84%	0.81
CCB A-3	9,325	0.214	7,994	0.184	1,331	0.031	86%	0.81
TD A-1	1,970	0.045	1,579	0.036	391	0.009	80%	0.78
CCB B-1	19,099	0.438	10,055	0.231	9,044	0.208	53%	0.62
CCB B-2	2,306	0.053	2,306	0.053	0	0.000	100%	0.90
CCB B-3	7,452	0.171	6,432	0.148	1,020	0.023	86%	0.82
CCB B-4	6,012	0.138	4,771	0.110	1,241	0.028	79%	0.78
CCB B-5	9,134	0.210	6,796	0.156	2,338	0.054	74%	0.75
CCB B-6	12,046	0.277	8,124	0.187	3,922	0.090	67%	0.70
WQU B-1	32,575	0.748	29,847	0.685	2,728	0.063	92%	0.85
WQU B-2	9,855	0.226	9,789	0.225	66	0.002	99%	0.90
YD B-1	6,395	0.147	517	0.012	5,878	0.135	8%	0.35
YD B-2	3,615	0.083	152	0.003	3,463	0.079	4%	0.33
YD B-3	18,165	0.417	12,398	0.285	5,767	0.132	68%	0.71
YD B-4	3,759	0.086	3,017	0.069	742	0.017	80%	0.78
YD B-5	37,840	0.869	34,841	0.800	2,999	0.069	92%	0.85
YD B-6	4,526	0.104	4,167	0.096	359	0.008	92%	0.85
YD B-7	1,541	0.035	1,541	0.035	0	0.000	100%	0.90
TD B-1	1,724	0.040	1,724	0.040	0	0.000	100%	0.90
RL B-1	6,578	0.151	6,132	0.141	6,578	0.151	93%	1.14
RL B-2	6,000	0.138	6,000	0.138	0	0.000	100%	0.90
RL B-3	4,637	0.106	20,000	0.459	4,637	0.106	431%	4.18
RL B-4	7,300	0.168	7,300	0.168	0	0.000	100%	0.90
RL B-5	8,170	0.188	8,170	0.188	0	0.000	100%	0.90
RL B-6	8,082	0.186	8,082	0.186	1	0.000	100%	0.90
RL B-7	7,320	0.168	7,320	0.168	0	0.000	100%	0.90
RL B-8	4,647	0.107	4,647	0.107	0	0.000	100%	0.90
EX CB-1	5,567	0.128	4,850	0.111	717	0.016	87%	0.82
EX CB-2	7,200	0.165	5,391	0.124	1,809	0.042	75%	0.75

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Summary Report

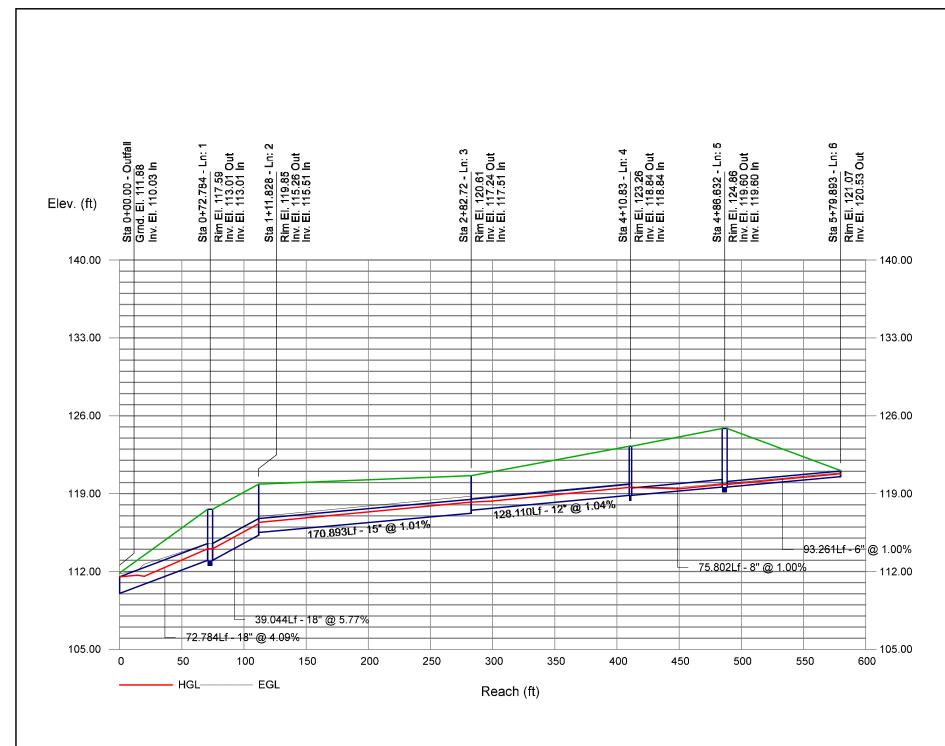
ine o.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	PIPE-39	7.18	18	Cir	72.784	110.03	113.01	4.094	111.53	114.05	n/a	114.05 j	End	Manhole
2	PIPE-20	7.21	18	Cir	39.044	113.01	115.26	5.770	114.05	116.30	n/a	116.30	1	Grate
3	PIPE-2	6.16	15	Cir	170.893	115.51	117.24	1.012	116.41	118.24	0.49	118.24	2	Grate
4	PIPE-49	2.87	12	Cir	128.110	117.51	118.84	1.040	118.24	119.56	n/a	119.56 j	3	Grate
5	PIPE-47	0.25	8	Cir	75.802	118.84	119.60	1.000	119.56	119.83	n/a	119.83 j	4	Manhole
6	PIPE-46	0.26	6	Cir	93.261	119.60	120.53	1.000	119.83	120.78	0.10	120.78	5	Grate

Project File: Network A.stm

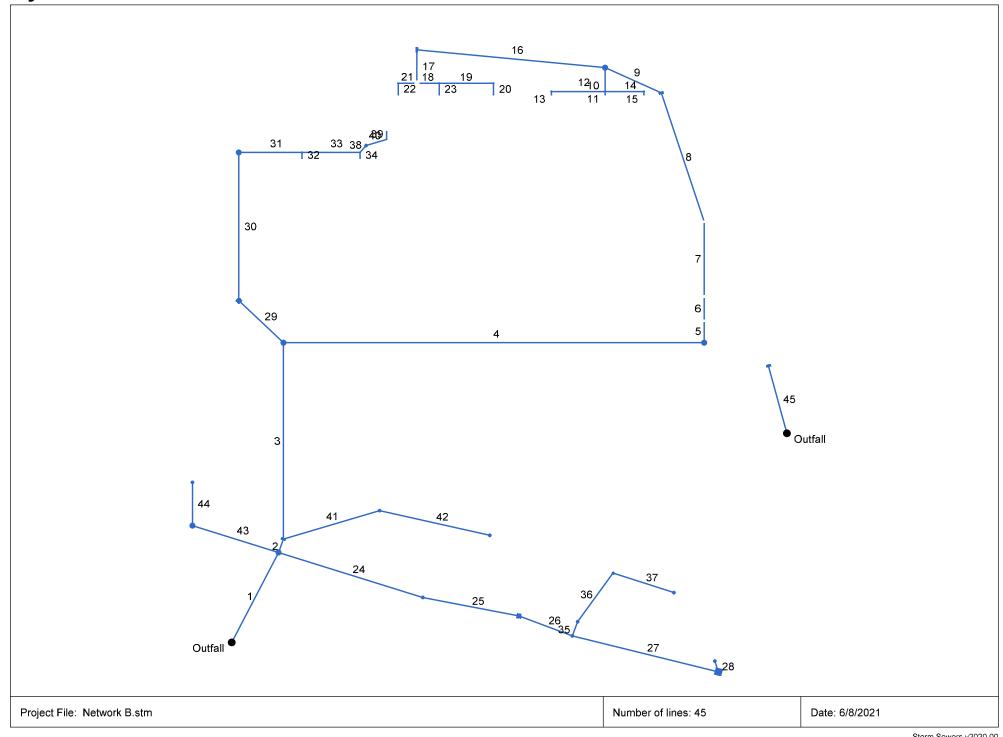
Number of lines: 6

Run Date: 6/8/2021

NOTES: Return period = 10 Yrs.; j - Line contains hyd. jump.


Statio	n	Len	Drng A	rea	Rnoff	Area x	С	Тс		1	Total		Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
ine	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	- (1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1		72.784		1.33	0.00	0.00	1.09	0.0	7.4	6.6	7.18	18.41	4.79	18	4.09	110.03	113.01	111.53	114.05	111.88	117.59	PIPE-39
2		39.044		1.33	0.81	0.17	1.09	5.0	7.3	6.6	7.21	27.33	5.53	18	5.77	113.01	115.26	114.05	116.30	117.59	119.85	PIPE-20
3		170.893		1.12	0.81	0.50	0.91	5.0	6.8	6.7	6.16	7.04	6.15	15	1.01	115.51	117.24	116.41	118.24	119.85	120.61	PIPE-2
4		128.110		0.51	0.83	0.38	0.42	5.0	6.4	6.9	2.87	3.93	4.68	12	1.04	117.51	118.84	118.24	119.56	120.61	123.26	PIPE-49
5		75.802		0.05	0.00	0.00	0.04	0.0	5.6	7.1	0.25	1.31	1.52	8	1.00	118.84	119.60	119.56	119.83	123.26	124.86	PIPE-47
6	5	93.261	0.05	0.05	0.78	0.04	0.04	5.0	5.0	7.2	0.26	0.61	2.72	6	1.00	119.60	120.53	119.83	120.78	124.86	121.07	PIPE-46

Number of lines: 6


NOTES:Intensity = 88.24 / (Inlet time + 15.50) ^ 0.83; Return period =Yrs. 10; c = cir e = ellip b = box

Project File: Network A.stm

Run Date: 6/8/2021

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Summary Report

2 P 3 P 4 P	PIPE-40 PIPE-28 PIPE-73	25.99 19.77	24	Cir			(ft)	(%)	(ft)	(ft)	(ft)	(ft)	No.	Туре
3 P	PIPE-73	19.77		"	87.891	109.21	110.13	1.047	111.21	112.10	1.07	113.17	End	Manhole
4 P			24	Cir	12.361	112.31	112.43	0.971	113.69	114.03	1.05	114.03	1	Grate
		11.52	24	Cir	170.427	112.43	114.13	0.997	114.03	115.35	n/a	115.35 j	2	Manhole
! <u>-</u> _	PIPE-110	10.06	18	Cir	363.416	114.13	117.77	1.002	115.35	118.99	0.66	118.99	3	Manhole
5 P	PIPE-94	10.09	18	Cir	19.000	118.27	118.46	1.000	119.37	119.68	0.33	119.68	4	Grate
6 P	PIPE-72	9.10	18	Cir	21.000	118.46	118.67	1.000	119.68	119.84	n/a	119.84 j	5	Grate
7 P	PIPE-60	9.04	18	Cir	65.000	118.67	119.32	1.000	119.84	120.48	n/a	120.48 j	6	Grate
8 P	PIPE-59	8.86	15	Cir	117.605	119.32	120.49	0.995	120.57*	122.46*	0.94	123.40	7	Grate
9 P	PIPE-96	7.12	15	Cir	53.141	120.49	121.02	0.997	123.40*	123.95*	0.52	124.47	8	Manhole
10 P	PIPE-103 (1)	3.10	12	Cir	20.700	124.65	124.86	1.014	125.33	125.61	0.37	125.61	9	Manhole
11 P	PIPE-103	1.14	8	Cir	2.810	125.33	125.36	1.068	125.80	125.87	0.25	125.87	10	Grate
12 P	PIPE-117	1.27	8	Cir	46.598	124.86	125.33	1.009	125.61	125.99	0.21	126.19	10	Manhole
13 P	PIPE-116	1.28	8	Cir	2.810	125.33	125.36	1.068	126.19*	126.22*	0.21	126.43	12	Grate
14 P	PIPE-104	0.74	8	Cir	33.407	124.94	125.27	0.988	125.61	125.68	n/a	125.85 j	10	Manhole
15 P	PIPE-102	0.74	8	Cir	2.810	125.27	125.30	1.068	125.85	125.71	n/a	125.71	14	Grate
16 P	PIPE-95	4.48	15	Cir	163.365	121.02	122.66	1.004	124.47*	125.14*	0.31	125.45	9	Grate
17 P	PIPE-100	3.08	12	Cir	28.913	123.16	123.45	1.003	125.45*	125.64*	0.24	125.88	16	Manhole
18 P	PIPE-99	2.37	8	Cir	19.199	123.85	124.04	0.990	125.88*	126.51*	0.72	127.22	17	Manhole
19 P	PIPE-115	1.27	8	Cir	46.844	124.04	125.12	2.306	127.22*	127.66*	0.21	127.87	18	Manhole
20 P	PIPE-114	1.28	8	Cir	10.000	125.12	125.22	1.000	127.87*	127.97*	0.21	128.17	19	Grate
21 P	PIPE-101	0.73	8	Cir	16.217	124.25	124.41	0.987	125.88*	125.93*	0.07	126.00	17	Manhole
22 P	PIPE-97	0.74	8	Cir	10.000	124.41	124.70	2.900	126.00*	126.03*	0.07	126.10	21	Grate
23 P	PIPE-98	1.14	8	Cir	10.000	124.40	124.70	3.000	127.22*	127.30*	0.17	127.46	18	Grate
24 P	PIPE-35	6.54	24	Cir	130.589	110.13	111.24	0.850	113.17	113.24	0.03	113.27	1	Grate

Number of lines: 45

NOTES: Return period = 10 Yrs.; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

Project File: Network B.stm

Run Date: 6/8/2021

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	PIPE-81	5.83	18	Cir	84.594	111.34	112.29	1.123	113.27	113.43	0.05	113.48	24	Manhole
26	PIPE-80	5.90	15	Cir	49.272	112.39	113.24	1.725	113.48	114.22	n/a	114.22 j	25	Grate
27	PIPE-79	1.04	15	Cir	130.054	116.69	122.81	4.706	116.91	123.21	0.15	123.21	26	Manhole
28	PIPE-78	1.04	12	Cir	9.990	123.13	123.23	1.001	123.48	123.66	0.16	123.66	27	Grate
29	PIPE-108	2.25	12	Cir	53.094	118.32	118.85	0.998	118.87	119.49	n/a	119.49	3	Manhole
30	PIPE-107	2.33	12	Cir	128.501	118.85	120.13	0.996	119.49	120.78	0.29	120.78	29	Manhole
31	PIPE-106 (1)	2.37	12	Cir	54.606	120.13	120.68	1.007	120.78	121.34	0.29	121.34	30	Manhole
32	PIPE-109	1.01	8	Cir	5.000	122.47	122.57	2.000	122.82	123.05	n/a	123.05	31	Grate
33	PIPE-106	1.44	12	Cir	50.058	120.68	121.18	0.999	121.34	121.69	n/a	121.69 j	31	Manhole
34	PIPE-105	0.94	8	Cir	5.000	121.97	122.57	12.000	122.18	123.03	0.21	123.03	33	Grate
35	PIPE-58	4.14	12	Cir	13.138	119.51	119.64	0.989	120.51	120.64	0.22	120.86	26	Grate
36	PIPE-57	2.70	12	Cir	52.099	119.64	120.73	2.092	120.86	121.43	n/a	121.43 j	35	Grate
37	PIPE-55	2.23	12	Cir	55.287	120.73	121.91	2.134	121.43	122.55	n/a	122.55 j	36	Grate
38	PIPE-113	0.53	6	Cir	7.972	121.18	121.26	1.003	121.69	121.74	0.10	121.84	33	Grate
39	PIPE-112	0.27	6	Cir	18.461	121.26	121.44	0.975	121.84	121.87	0.03	121.90	38	Manhole
40	PIPE-111	0.27	6	Cir	6.596	121.44	121.51	1.061	121.90	121.77	0.10	121.77	39	Manhole
41	PIPE-74	6.01	15	Cir	86.598	117.59	118.54	1.097	118.45	119.53	n/a	119.53	2	Grate
42	PIPE-24	5.52	15	Cir	97.671	118.54	120.14	1.638	119.53	121.09	n/a	121.09 j	41	Grate
43	PIPE-76	0.81	12	Cir	77.894	110.13	110.91	1.001	113.17*	113.21*	0.02	113.22	1	Manhole
44	PIPE-75	0.81	12	Cir	37.609	113.81	115.69	4.999	114.02	116.07	n/a	116.07	43	Grate
45	PIPE-56	0.34	8	Cir	60.801	125.22	126.50	2.105	125.89	126.77	n/a	126.77 j	End	Grate

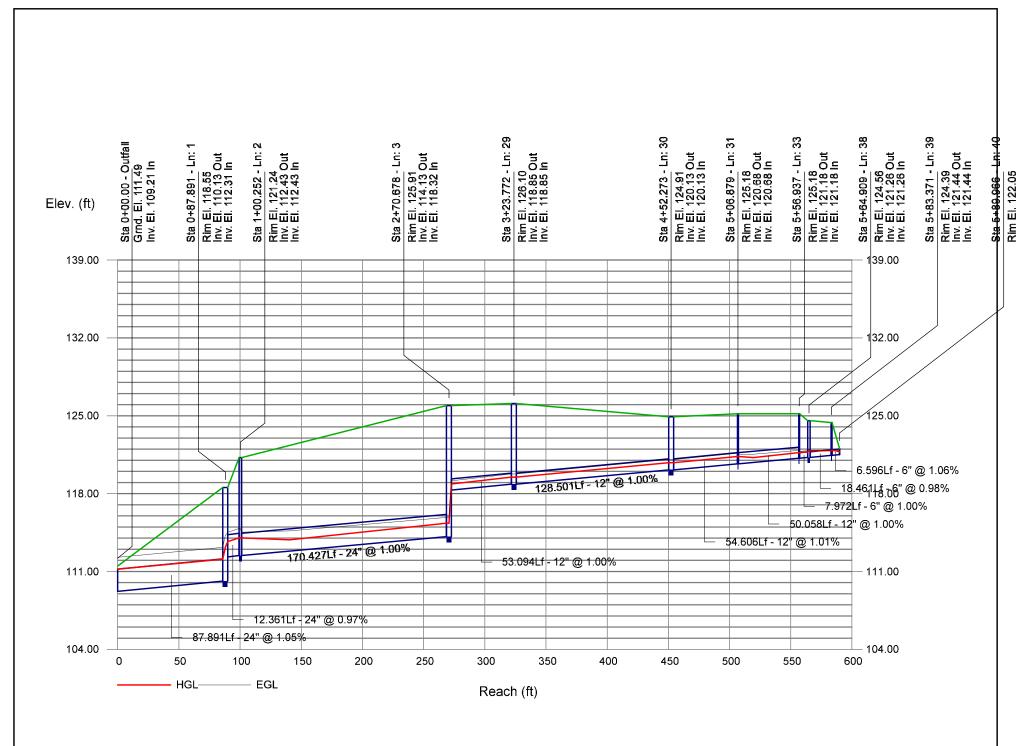
Number of lines: 45

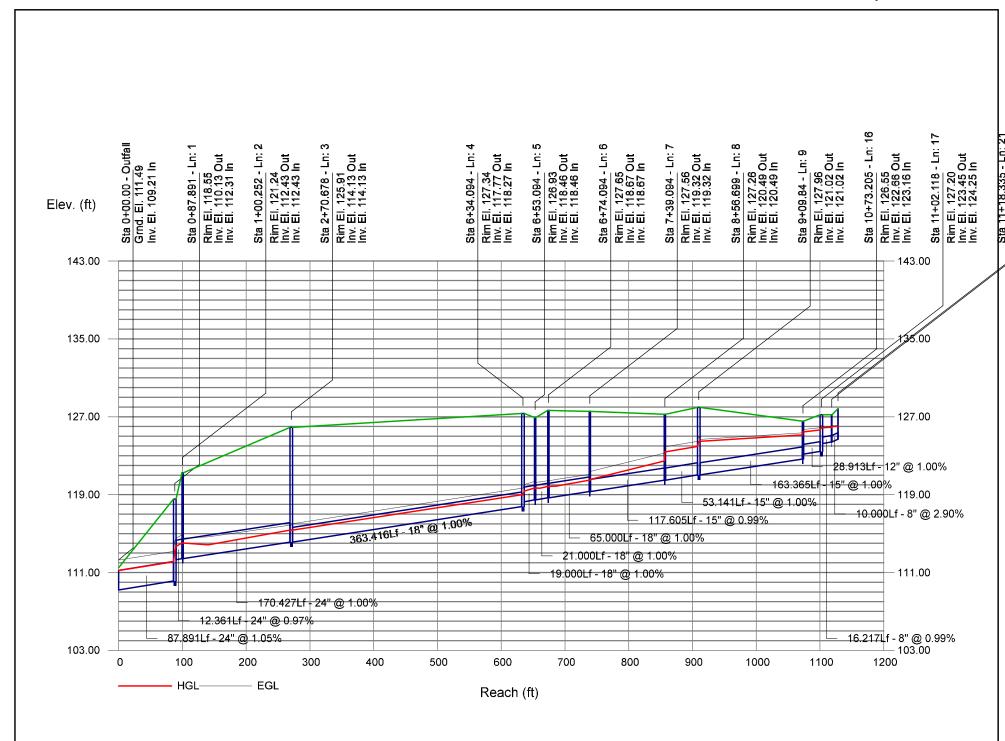
NOTES: Return period = 10 Yrs.; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

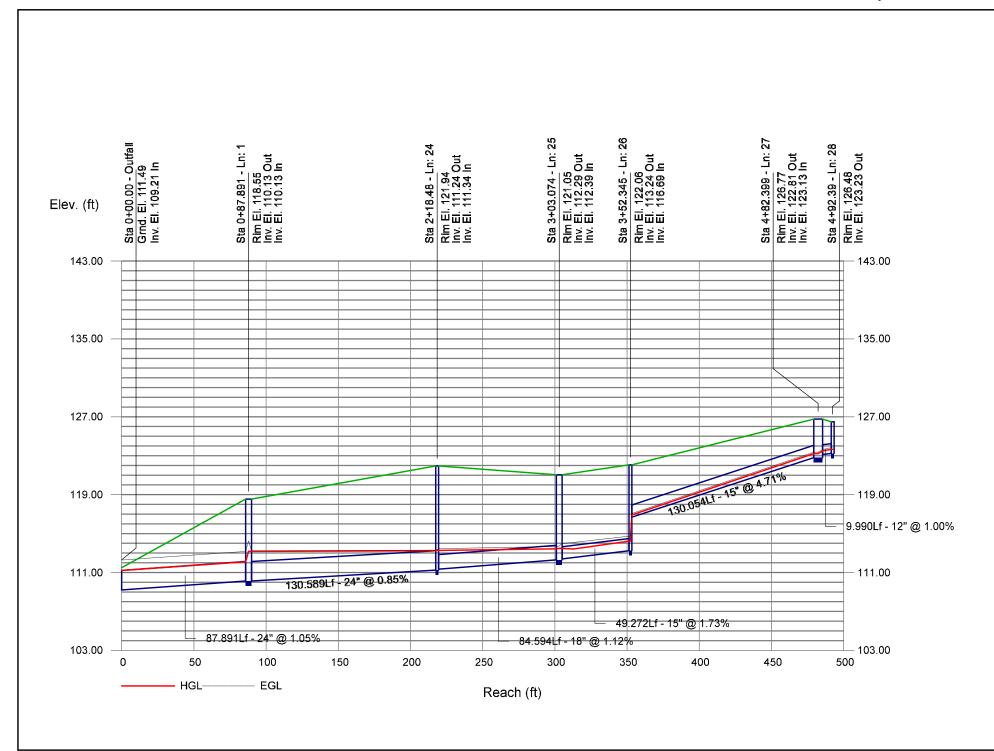
Project File: Network B.stm

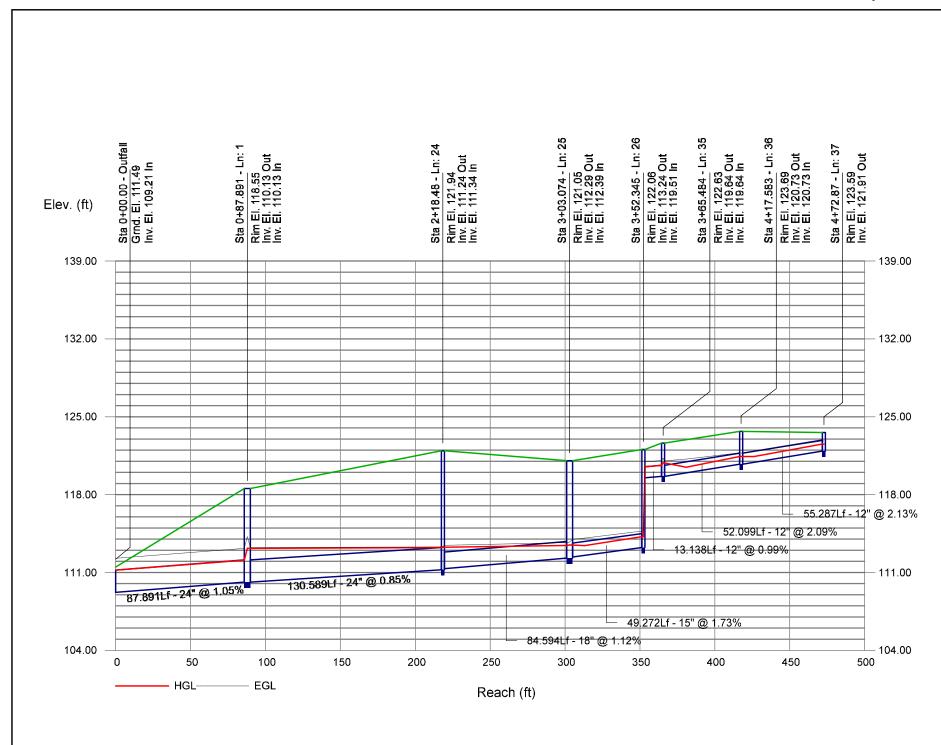
Run Date: 6/8/2021

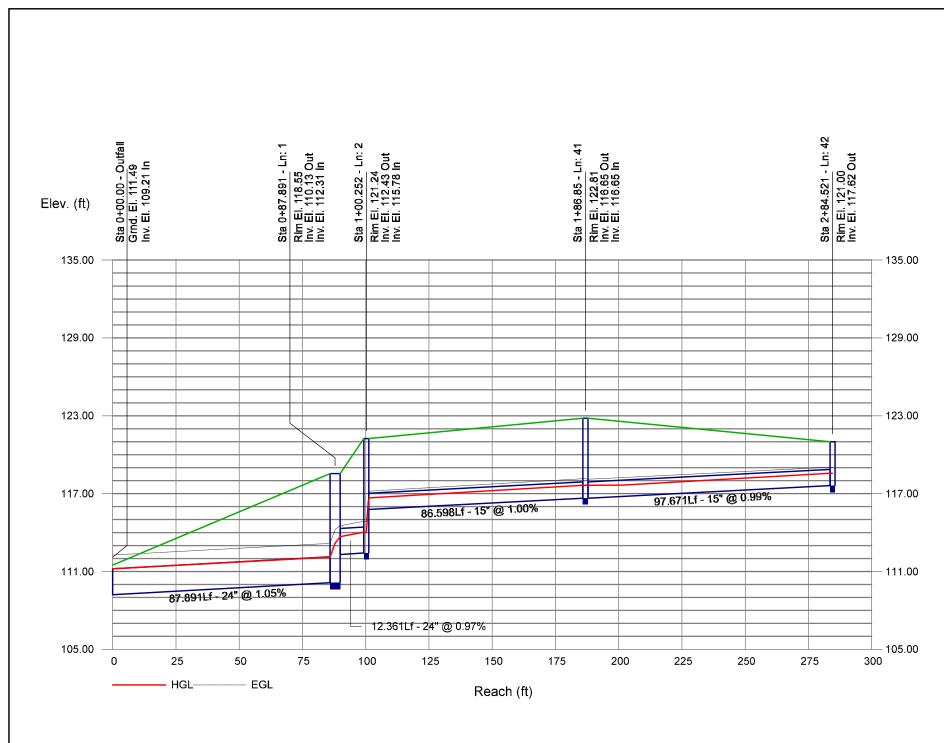
Statio	n	Len	Drng A	rea	Rnoff	Area x	С	Тс		Rain	Total	Сар	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	87.891	0.00	5.54	0.00	0.00	4.40	0.0	8.4	5.9	25.99	25.07	8.28	24	1.05	109.21	110.13	111.21	112.10	111.49	118.55	PIPE-40
2	1	12.361	0.75	4.19	0.85	0.64	3.34	5.0	8.4	5.9	19.77	24.14	7.96	24	0.97	112.31	112.43	113.69	114.03	118.55	121.24	PIPE-28
3	2	170.427	0.00	2.47	0.00	0.00	1.88	0.0	7.8	6.1	11.52	24.47	5.02	24	1.00	112.43	114.13	114.03	115.35	121.24	125.91	PIPE-73
4	3	363.416	0.00	2.10	0.00	0.00	1.55	0.0	6.9	6.5	10.06	11.39	6.54	18	1.00	114.13	117.77	115.35	118.99	125.91	127.34	PIPE-110
5	4	19.000	0.21	2.10	0.75	0.16	1.55	5.0	6.8	6.5	10.09	11.38	6.91	18	1.00	118.27	118.46	119.37	119.68	127.34	126.93	PIPE-94
6	5	21.000	0.08	1.89	0.33	0.03	1.39	5.0	6.8	6.5	9.10	11.38	6.04	18	1.00	118.46	118.67	119.68	119.84	126.93	127.65	PIPE-72
7	6	65.000	0.15	1.81	0.35	0.05	1.37	5.0	6.6	6.6	9.04	11.38	6.14	18	1.00	118.67	119.32	119.84	120.48	127.65	127.56	PIPE-60
8	7	117.605	0.44	1.66	0.61	0.27	1.31	5.0	6.3	6.7	8.86	6.98	7.22	15	0.99	119.32	120.49	120.57	122.46	127.56	127.26	PIPE-59
9	8	53.141	0.00	1.22	0.00	0.00	1.04	0.0	6.2	6.8	7.12	6.99	5.81	15	1.00	120.49	121.02	123.40	123.95	127.26	127.96	PIPE-96
10	9	20.700	0.00	0.47	0.00	0.00	0.42	0.0	5.2	7.3	3.10	3.89	5.19	12	1.01	124.65	124.86	125.33	125.61	127.96	128.15	PIPE-103 (1)
11	10	2.810	0.17	0.17	0.90	0.15	0.15	5.0	5.0	7.5	1.14	1.35	4.18	8	1.07	125.33	125.36	125.80	125.87	128.15	128.07	PIPE-103
12	10	46.598	0.00	0.19	0.00	0.00	0.17	0.0	5.0	7.5	1.27	1.31	3.66	8	1.01	124.86	125.33	125.61	125.99	128.15	128.15	PIPE-117
13	12	2.810	0.19	0.19	0.90	0.17	0.17	5.0	5.0	7.5	1.28	1.35	3.66	8	1.07	125.33	125.36	126.19	126.22	128.15	128.07	PIPE-116
14	10	33.407	0.00	0.11	0.00	0.00	0.10	0.0	5.0	7.5	0.74	1.30	2.70	8	0.99	124.94	125.27	125.61	125.68	128.15	128.00	PIPE-104
15	14	2.810	0.11	0.11	0.90	0.10	0.10	5.0	5.0	7.5	0.74	1.35	2.81	8	1.07	125.27	125.30	125.85	125.71	128.00	128.01	PIPE-102
16	9	163.365	0.28	0.75	0.71	0.20	0.62	5.0	5.4	7.2	4.48	7.01	3.65	15	1.00	121.02	122.66	124.47	125.14	127.96	126.55	PIPE-95
17	16	28.913	0.00	0.47	0.00	0.00	0.42	0.0	5.3	7.3	3.08	3.86	3.92	12	1.00	123.16	123.45	125.45	125.64	126.55	127.20	PIPE-100
18	17	19.199	0.00	0.36	0.00	0.00	0.32	0.0	5.3	7.3	2.37	1.30	6.78	8	0.99	123.85	124.04	125.88	126.51	127.20	127.20	PIPE-99
19	18	46.844	0.00	0.19	0.00	0.00	0.17	0.0	5.0	7.4	1.27	1.99	3.64	8	2.31	124.04	125.12	127.22	127.66	127.20	127.84	PIPE-115
20	19	10.000	0.19	0.19	0.90	0.17	0.17	5.0	5.0	7.5	1.28	1.31	3.66	8	1.00	125.12	125.22	127.87	127.97	127.84	127.93	PIPE-114
21	17	16.217	0.00	0.11	0.00	0.00	0.10	0.0	5.1	7.4	0.73	1.30	2.10	8	0.99	124.25	124.41	125.88	125.93	127.20	127.20	PIPE-101
22	21	10.000	0.11	0.11	0.90	0.10	0.10	5.0	5.0	7.5	0.74	2.23	2.12	8	2.90	124.41	124.70	126.00	126.03	127.20	127.84	PIPE-97
Proje	ct File:	Networ	k B.stm							l		l .			l	Number	of lines: 4	.5	1	Run Da	te: 6/8/202	 21

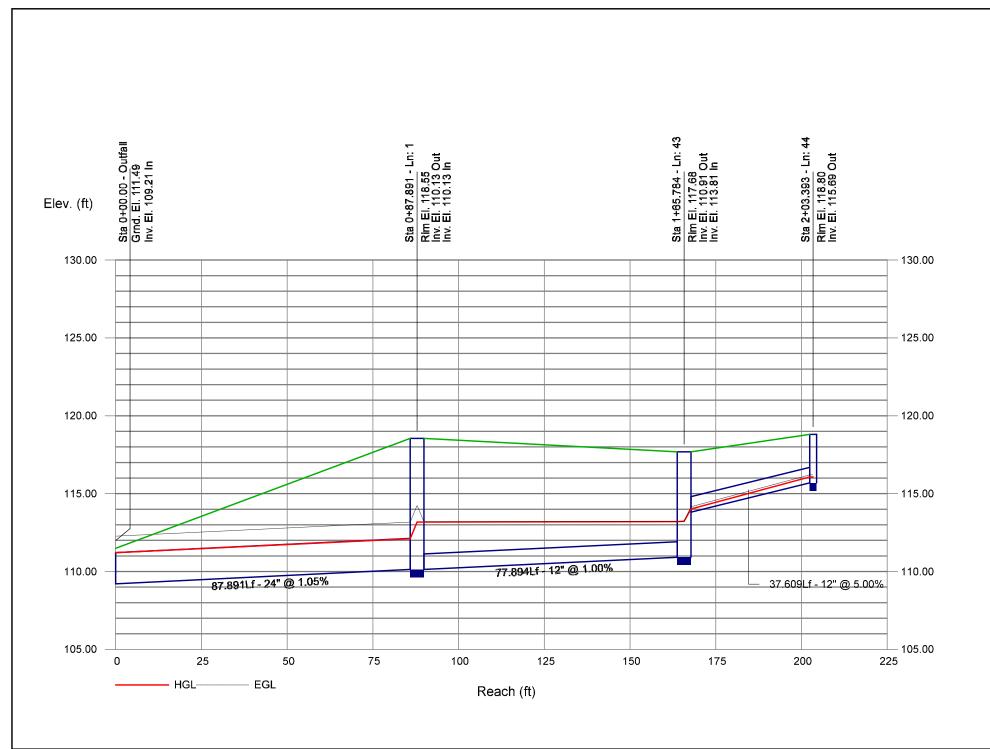

NOTES:Intensity = 35.55 / (Inlet time + 3.80) ^ 0.72; Return period =Yrs. 10; c = cir e = ellip b = box


Line				Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
		Incr	Total	coeff	Incr	Total	Inlet	Syst	(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
18	10.000	0.17	0.17	0.90	0.15	0.15	5.0	5.0	7.5	1.14	2.27	3.27	8	3.00	124.40	124.70	127.22	127.30	127.20	127.84	PIPE-98
1	130.589	0.17	1.21	0.75	0.13	0.95	5.0	6.0	6.9	6.54	22.59	2.08	24	0.85	110.13	111.24	113.17	113.24	118.55	113.01	PIPE-35
24	84.594	0.00	1.04	0.00	0.00	0.82	0.0	5.6	7.1	5.83	12.06	3.67	18	1.12	111.34	112.29	113.27	113.43	113.01	121.05	PIPE-81
25	49.272	0.13	1.04	0.82	0.11	0.82	5.0	5.5	7.2	5.90	9.19	5.45	15	1.73	112.39	113.24	113.48	114.22	121.05	122.06	PIPE-80
26	130.054	0.00	0.17	0.00	0.00	0.14	0.0	5.0	7.4	1.04	15.18	5.06	15	4.71	116.69	122.81	116.91	123.21	122.06	126.77	PIPE-79
27	9.990	0.17	0.17	0.82	0.14	0.14	5.0	5.0	7.5	1.04	3.86	3.70	12	1.00	123.13	123.23	123.48	123.66	126.77	126.48	PIPE-78
3	53.094	0.00	0.37	0.00	0.00	0.33	0.0	6.3	6.8	2.25	3.85	4.66	12	1.00	118.32	118.85	118.87	119.49	125.91	126.10	PIPE-108
29	128.501	0.00	0.37	0.00	0.00	0.33	0.0	5.8	7.0	2.33	3.85	4.34	12	1.00	118.85	120.13	119.49	120.78	126.10	124.91	PIPE-107
30	54.606	0.00	0.37	0.00	0.00	0.33	0.0	5.6	7.1	2.37	3.87	4.34	12	1.01	120.13	120.68	120.78	121.34	124.91	125.18	PIPE-106 (1)
31	5.000	0.15	0.15	0.90	0.14	0.14	5.0	5.0	7.5	1.01	1.85	4.60	8	2.00	122.47	122.57	122.82	123.05	125.18	125.28	PIPE-109
31	50.058	0.00	0.22	0.00	0.00	0.20	0.0	5.3	7.3	1.44	3.86	3.11	12	1.00	120.68	121.18	121.34	121.69	125.18	125.18	PIPE-106
33	5.000	0.14	0.14	0.90	0.13	0.13	5.0	5.0	7.5	0.94	4.53	6.95	8	12.00	121.97	122.57	122.18	123.03	125.18	126.86	PIPE-105
26	13.138	0.23	0.74	0.90	0.21	0.58	5.0	5.4	7.2	4.14	3.84	5.28	12	0.99	119.51	119.64	120.51	120.64	122.06	122.63	PIPE-58
35	52.099	0.09	0.51	0.78	0.07	0.37	5.0	5.2	7.3	2.70	5.58	4.00	12	2.09	119.64	120.73	120.86	121.43	122.63	123.69	PIPE-57
36	55.287	0.42	0.42	0.71	0.30	0.30	5.0	5.0	7.5	2.23	5.64	3.99	12	2.13	120.73	121.91	121.43	122.55	123.69	123.59	PIPE-55
33	7.972	0.04	0.08	0.90	0.04	0.07	5.0	5.3	7.3	0.53	0.61	2.69	6	1.00	121.18	121.26	121.69	121.74	125.18	124.56	PIPE-113
38	18.461	0.00	0.04	0.00	0.00	0.04	0.0	5.1	7.4	0.27	0.60	1.43	6	0.98	121.26	121.44	121.84	121.87	124.56	124.39	PIPE-112
39	6.596	0.04	0.04	0.90	0.04	0.04	5.0	5.0	7.5	0.27	0.63	2.00	6	1.06	121.44	121.51	121.90	121.77	124.39	122.05	PIPE-111
2	86.598	0.10	0.97	0.85	0.09	0.82	5.0	5.3	7.3	6.01	7.33	6.21	15	1.10	117.59	118.54	118.45	119.53	121.24	122.81	PIPE-74
41	97.671	0.87	0.87	0.85	0.74	0.74	5.0	5.0	7.5	5.52	8.95	5.40	15	1.64	118.54	120.14	119.53	121.09	122.81	121.00	PIPE-24
1	77.894	0.00	0.14	0.00	0.00	0.11	0.0	5.1	7.4	0.81	3.86	1.03	12	1.00	110.13	110.91	113.17	113.21	118.55	117.68	PIPE-76
43	37.609	0.14	0.14	0.78	0.11	0.11	5.0	5.0	7.5	0.81	8.63	4.95	12	5.00	113.81	115.69	114.02	116.07	117.68	118.80	PIPE-75
ct File:	Network	k B otm						L	<u> </u>					I	Numbar	r of lines: 4	15		Bus Da	to: 6/9/201	21
	18 1 24 25 26 27 3 29 30 31 31 33 26 35 36 33 38 39 2 41 1 43	To (ft) 18	To (ft) Incr (ac)	To (ft) Incr Total (ac) (ac) 18	Tole Incr Incr Total (ac) Coeff (C) 18 10.000 0.17 0.17 0.90 1 130.589 0.17 1.21 0.75 24 84.594 0.00 1.04 0.00 25 49.272 0.13 1.04 0.82 26 130.054 0.00 0.17 0.00 27 9.990 0.17 0.17 0.82 3 53.094 0.00 0.37 0.00 29 128.501 0.00 0.37 0.00 30 54.606 0.00 0.37 0.00 31 5.000 0.15 0.15 0.90 31 50.058 0.00 0.22 0.00 33 5.000 0.14 0.14 0.90 35 52.099 0.09 0.51 0.78 36 55.287 0.42 0.42 0.71 33 7.972 0.04 0.04 0.00	To Line (ft) (ac) (ac) (C) (C) Incr (C) (C) Incr (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	Tolai (ft)	To Line Incr Total (ac) coeff (C) Incr Total (min) 18 10.000 0.17 0.17 0.90 0.15 0.15 5.0 1 130.589 0.17 1.21 0.75 0.13 0.95 5.0 24 84.594 0.00 1.04 0.00 0.00 0.82 0.0 25 49.272 0.13 1.04 0.82 0.11 0.82 5.0 26 130.054 0.00 0.17 0.00 0.00 0.14 0.0 27 9.990 0.17 0.17 0.82 0.14 0.14 5.0 3 53.094 0.00 0.37 0.00 0.00 0.33 0.0 29 128.501 0.00 0.37 0.00 0.00 0.33 0.0 30 54.606 0.00 0.37 0.00 0.00 0.33 0.0 31 5.0058 0.00 0.22 0.00	Toline (ft) (ac) (ac) (C) (C) (C) (D) (min) Tole (ft)	Thie line line line line line line line li	Table	Name	Name	Table	Table	Table	This This	Thing Thin	Table	Part Part	


NOTES:Intensity = 35.55 / (Inlet time + 3.80) ^ 0.72; Return period =Yrs. 10; c = cir e = ellip b = box


Statio	n	Len	Drng Area		Rnoff	Area x C		Тс		Rain	Total	Сар	Vel	Pipe		Invert Elev		HGL Elev		Grnd / Rim Elev		Line ID
Line	To Line (ft)		Incr	Total (ac) (C)	соеп	Incr	Total	Inlet	Syst	(I)	flow	full		Size S	Slope	Dn	Up	Dn	Up	Dn	Up	1
		(ft)	(ac)				(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
45	End	60.801	0.05	0.05	0.90	0.05	0.05	5.0	5.0	7.5	0.34	1.90	1.76	8	2.11	125.22	126.50	125.89	126.77	125.97	129.45	PIPE-56
Project File: Network B.stm												Number of lines: 45				Run Da	te: 6/8/202	21				


NOTES:Intensity = 35.55 / (Inlet time + 3.80) ^ 0.72; Return period =Yrs. 10; c = cir e = ellip b = box



APPENDIX D

Stormwater Quality Calculations

STORMWATER QUALITY CALCULATIONS

Methodology: Water Quality Volume and Flow

Reference: 2004 Stormwater Quality Manual

$$WQV = \frac{(1")(R)(A)}{12}$$

 $WQF = (q_u)(A)(Q)$

WQV = water quality volume (acre-feet)

R = volumetric runoff coefficient

I = percent impervious cover

A = site area (acres)

WQF = water quality flow (cfs)

q_u = unit peak discharge (cfs/mi²/inch)

A = drainage area (mi²)

Q = runoff depth (watershed inches)

= [WQV (acre-feet)]x[12 (inches/foot)]

Drainage area (acres)

Site Characteristics

Description WQU A-1 Drainage Area to feature

Area 1.33 acres 0.002078 mi^2

Impervious Area 1.17 acres 7761

Tc 0.08 hr

I 88.0 % *R* = 0.05+ 0.009(*I*) = 0.842

WQV = 0.09 acre-ft 4,064 cf

 $Q = WQV \times 12/A = 0.84 \text{ inches}$

determine qu using NRCS Runoff Curve Number

P = 1.0 inch

CN = $\frac{1000}{[10 + 5P + 10Q - 10(Q^2 + 1.25QP)^{1/2}]}$

CN = 90

Determine I_a, table 4-1 Chapter 4 TR-55

l_a = 0.222

Determine q_u, Exhibit 4-III Chapter 4 TR-55

 $q_u = 640 \text{ csm/in}$

WQF = 1.1 cfs

						
	CKD	_JEL	DATE	3/12/2021	SHEET	1 of 1
South Windsor, CT	BY	IJAB	DATE	3/12/2021	PROJ NO.	140222801
Evergreen Walk						

Langan

Engineering and Environmental Services

STORMWATER QUALITY CALCULATIONS

Methodology: Water Quality Volume and Flow

Reference: 2004 Stormwater Quality Manual

$$WQV = \frac{(1")(R)(A)}{12}$$

 $WQF = (q_u)(A)(Q)$

WQV = water quality volume (acre-feet)

R = volumetric runoff coefficient

I = percent impervious cover

A = site area (acres)

WQF = water quality flow (cfs)

q_u = unit peak discharge (cfs/mi²/inch)

A = drainage area (mi²)

Q = runoff depth (watershed inches)

= [WQV (acre-feet)]x[12 (inches/foot)]

Drainage area (acres)

Site Characteristics

Description WQU B-1 Drainage Area to feature

Area 3.86 acres 0.006031 mi^2

Impervious Area 3.21 acres 7761

Tc 0.08 hr

I 83.2 % *R* = 0.05+ 0.009(*I*) = 0.798

WQV = 0.26 acre-ft 11,188 cf

 $Q = WQV \times 12/A = 0.80 \text{ inches}$

determine qu using NRCS Runoff Curve Number

P = 1.0 inch

CN = $\frac{1000}{[10 + 5P + 10Q - 10(Q^2 + 1.25QP)^{1/2}]}$

CN = 90

Determine I_a, table 4-1 Chapter 4 TR-55

l_a = 0.222

Determine q_u, Exhibit 4-III Chapter 4 TR-55

 $q_u = 640 \text{ csm/in}$

WQF = 3.1 cfs

Evergreen Walk						
South Windsor, CT	BY	IJAB	DATE	3/12/2021	PROJ NO.	140222801
					_	
	CKD	JEL	DATE	3/12/2021	SHEET	1 of 1

Langan

Engineering and Environmental Services

STORMWATER QUALITY CALCULATIONS

Methodology: Water Quality Volume and Flow

Reference: 2004 Stormwater Quality Manual

$$WQV = \frac{(1")(R)(A)}{12}$$

 $WQF = (q_u)(A)(Q)$

WQV = water quality volume (acre-feet)

R = volumetric runoff coefficient

I = percent impervious cover

A = site area (acres)

WQF = water quality flow (cfs)

q_u = unit peak discharge (cfs/mi²/inch)

A = drainage area (mi²)

Q = runoff depth (watershed inches)

= [WQV (acre-feet)]x[12 (inches/foot)]

Drainage area (acres)

Site Characteristics

Description WQU B-2 Drainage Area to feature

Area 0.73 acres 0.001141 mi^2

Impervious Area 0.58 acres 7761

Tc 0.08 hr

I = 0.05 + 0.009(I) = 79.5 % R = 0.05 + 0.009(I) = 0.765

WQV = 0.05 acre-ft 2,027 cf

 $Q = WQV \times 12/A = 0.77 \text{ inches}$

determine qu using NRCS Runoff Curve Number

P = 1.0 inch

CN = $\frac{1000}{[10 + 5P + 10Q - 10(Q^2 + 1.25QP)^{1/2}]}$

CN = 90

Determine I_a, table 4-1 Chapter 4 TR-55

l_a = 0.222

Determine q_u, Exhibit 4-III Chapter 4 TR-55

 $q_u = 640 \text{ csm/in}$

WQF = 0.6 cfs

Evergreen Walk						
South Windsor, CT	BY	IJAB	DATE	3/12/2021	PROJ NO.	140222801
					_	
	CKD	JEL	DATE	3/12/2021	SHEET	1 of 1

Langan

Engineering and Environmental Services

<u>APPENDIX E</u>

NOAA Atlas 14 Rainfall Depths and Intensities

NOAA Atlas 14, Volume 10, Version 2 Location name: South Windsor, Connecticut, USA* Latitude: 41.8163°, Longitude: -72.5538° Elevation: 148.62 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-I	based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Average ı	ecurrence	interval (y	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.334 (0.259-0.431)	0.406 (0.314-0.524)	0.523 (0.403-0.677)	0.620 (0.476-0.807)	0.754 (0.560-1.03)	0.857 (0.625-1.19)	0.960 (0.681-1.39)	1.09 (0.732-1.61)	1.26 (0.816-1.93)	1.39 (0.880-2.17)
10-min	0.473 (0.367-0.610)	0.575 (0.445-0.742)	0.741 (0.571-0.959)	0.878 (0.674-1.14)	1.07 (0.794-1.46)	1.21 (0.885-1.69)	1.36 (0.964-1.97)	1.54 (1.04-2.28)	1.79 (1.16-2.74)	1.97 (1.25-3.08)
15-min	0.557 (0.431-0.718)	0.676 (0.523-0.873)	0.871 (0.672-1.13)	1.03 (0.793-1.35)	1.26 (0.934-1.71)	1.43 (1.04-1.99)	1.60 (1.13-2.31)	1.82 (1.22-2.69)	2.10 (1.36-3.22)	2.32 (1.47-3.62)
30-min	0.748 (0.580-0.964)	0.910 (0.705-1.18)	1.18 (0.907-1.52)	1.40 (1.07-1.82)	1.70 (1.26-2.31)	1.93 (1.41-2.69)	2.16 (1.53-3.13)	2.46 (1.65-3.63)	2.84 (1.84-4.36)	3.14 (1.98-4.90)
60-min	0.939 (0.728-1.21)	1.14 (0.886-1.48)	1.48 (1.14-1.92)	1.76 (1.35-2.29)	2.14 (1.59-2.91)	2.43 (1.77-3.39)	2.73 (1.93-3.95)	3.10 (2.08-4.58)	3.59 (2.32-5.49)	3.95 (2.50-6.18)
2-hr	1.21 (0.946-1.56)	1.47 (1.14-1.89)	1.89 (1.47-2.43)	2.24 (1.72-2.90)	2.71 (2.03-3.69)	3.08 (2.27-4.29)	3.45 (2.47-5.00)	3.96 (2.67-5.83)	4.64 (3.01-7.07)	5.15 (3.27-8.00)
3-hr	1.40 (1.09-1.79)	1.69 (1.32-2.17)	2.17 (1.69-2.79)	2.57 (1.99-3.32)	3.11 (2.34-4.22)	3.54 (2.61-4.91)	3.96 (2.85-5.73)	4.57 (3.09-6.70)	5.38 (3.50-8.17)	5.99 (3.81-9.28)
6-hr	1.75 (1.38-2.23)	2.13 (1.67-2.71)	2.74 (2.14-3.50)	3.24 (2.52-4.17)	3.94 (2.98-5.32)	4.48 (3.33-6.20)	5.01 (3.64-7.25)	5.83 (3.95-8.49)	6.90 (4.50-10.4)	7.72 (4.92-11.9)
12-hr	2.14 (1.69-2.71)	2.62 (2.07-3.32)	3.41 (2.68-4.33)	4.06 (3.17-5.18)	4.95 (3.76-6.65)	5.64 (4.21-7.76)	6.33 (4.62-9.10)	7.38 (5.02-10.7)	8.77 (5.74-13.2)	9.83 (6.29-15.0)
24-hr	2.51 (1.99-3.15)	3.11 (2.47-3.91)	4.09 (3.24-5.17)	4.91 (3.86-6.24)	6.03 (4.61-8.08)	6.90 (5.19-9.47)	7.77 (5.71-11.2)	9.15 (6.24-13.2)	11.0 (7.20-16.3)	12.4 (7.93-18.8)
2-day	2.83 (2.26-3.54)	3.56 (2.84-4.45)	4.75 (3.78-5.97)	5.74 (4.54-7.25)	7.11 (5.47-9.49)	8.16 (6.18-11.2)	9.21 (6.84-13.3)	11.0 (7.53-15.8)	13.4 (8.81-19.8)	15.2 (9.78-22.9)
3-day	3.08 (2.47-3.84)	3.88 (3.10-4.84)	5.19 (4.14-6.50)	6.28 (4.97-7.90)	7.77 (6.00-10.4)	8.93 (6.78-12.2)	10.1 (7.52-14.5)	12.1 (8.29-17.3)	14.8 (9.72-21.8)	16.8 (10.8-25.2)
4-day	3.30 (2.65-4.11)	4.15 (3.33-5.17)	5.55 (4.43-6.93)	6.70 (5.33-8.42)	8.30 (6.42-11.0)	9.52 (7.25-13.0)	10.8 (8.03-15.4)	12.9 (8.85-18.3)	15.7 (10.4-23.1)	17.9 (11.5-26.7)
7-day	3.91 (3.15-4.84)	4.87 (3.92-6.03)	6.43 (5.16-8.00)	7.73 (6.16-9.66)	9.51 (7.39-12.6)	10.9 (8.31-14.8)	12.3 (9.17-17.4)	14.6 (10.1-20.7)	17.7 (11.7-25.9)	20.0 (13.0-29.8)
10-day	4.53 (3.66-5.59)	5.54 (4.47-6.85)	7.19 (5.79-8.92)	8.56 (6.85-10.7)	10.5 (8.13-13.7)	11.9 (9.09-16.0)	13.4 (9.97-18.8)	15.7 (10.9-22.2)	18.9 (12.5-27.5)	21.2 (13.8-31.5)
20-day	6.51 (5.30-7.99)	7.59 (6.16-9.32)	9.34 (7.56-11.5)	10.8 (8.68-13.4)	12.8 (9.97-16.6)	14.3 (10.9-19.0)	15.9 (11.8-21.9)	18.1 (12.5-25.2)	20.9 (14.0-30.2)	23.1 (15.0-34.0)
30-day	8.21 (6.70-10.1)	9.31 (7.59-11.4)	11.1 (9.02-13.7)	12.6 (10.2-15.6)	14.7 (11.4-18.8)	16.2 (12.4-21.3)	17.8 (13.1-24.2)	19.8 (13.8-27.5)	22.3 (14.9-32.1)	24.3 (15.8-35.6)
45-day	10.4 (8.47-12.6)	11.5 (9.39-14.0)	13.3 (10.9-16.3)	14.9 (12.0-18.3)	17.0 (13.3-21.6)	18.6 (14.2-24.2)	20.3 (14.8-27.1)	21.9 (15.3-30.3)	24.1 (16.2-34.5)	25.8 (16.8-37.7)
60-day	12.2 (9.97-14.8)	13.3 (10.9-16.2)	15.2 (12.4-18.6)	16.8 (13.6-20.7)	19.0 (14.8-24.1)	20.7 (15.7-26.7)	22.4 (16.4-29.6)	23.8 (16.7-32.8)	25.8 (17.3-36.7)	27.2 (17.8-39.7)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

APPENDIX F

Operation and Maintenance Plan

Operation and Maintenance Manual 801 Evergreen Way South Windsor, Connecticut

Regular inspection and maintenance of the stormwater management system and uphill areas is necessary to ensure proper operation. These costs will be the responsibility of the developer. Inspections of the stormwater management system should be conducted monthly based on the following table:

Site Areas:

General inspections shall be conducted monthly and after a storm event resulting in more than 2.5" of rain over a 24-hour period (1 year storm).

Inspection and Maintenance

Check for:	Corrective Measure:
Erosion	Install erosion control measures and provide stabilization measures.
Spillage	Contain spill as close to source as possible with a dike of absorbent materials installed to protect drainage inlets, stormwater areas, or downstream wetlands and streams. All hazardous waste material, including absorbent materials must be disposed of by a licensed hazardous waste transporter and disposed of in an environmentally acceptable manner
Sediment Accumulation	Stabilize any disturbed areas uphill of where the sedimentation is occurring. Use temporary erosion control measures (i.e. silt fence, straw bales) to filter stormwater runoff.
Trash	Pick up and dispose of trash and litter in an environmentally acceptable manner.

Routine Maintenance

iloutillo illuliitoilulioo	
Maintenance Measure:	Frequency:
Surface Sweeping	Parking area and truck court paved areas shall be swept annually between April 1st and July 1st.

Catch Basins and Pipe:

All catch basins shall be inspected annually between May 1st and September 15th.

Inspection and Maintenance

Check for:	Corrective Measure:
Trash, Sediment, Snow,	Remove trash, sediment, snow/ice and debris and dispose of in an
Ice and Debris at Grate	environmentally acceptable manner.
Sediment & Trash	Remove sediment from sumps if depth of deposits is greater than one-half
Accumulation in Sump	the depth from the bottom of the catch basin to the invert of the lowest
	pipe in the basin.
Pipe blockages	Flush pipes to remove blockages. TV inspect as required.

Operation and Maintenance Manual 801 Evergreen Way South Windsor, Connecticut

At a minimum, the following maintenance measures shall be provided at the frequency listed in the following table:

Routine Maintenance

Maintenance Measure:	Frequency:
Sediment Removal	Minimum once per year, between May 1st and September 15th: Remove
	sediment and trash from catch basin sumps and grates and pipe inverts.
	Dispose of sediment and trash in an environmentally acceptable manner.
	Catch basins shall be cleaned when accumulated material exceeds 1 foot.

Rain Gardens

Rain Gardens shall be inspected monthly. Inspect after every major storm during first 3 months of operation and monthly thereafter. Rain gardens shall be inspected for invasive vegetation every 6 months.

Inspection and Maintenance

Check for:	Corrective Measure:
Trash and Debris	Remove trash and debris and dispose of in an environmentally acceptable
	manner.
Invasive and dead vegetation	Remove vegetation from rain garden. Revegetate as needed.

At a minimum, the following maintenance measures shall be provided at the frequency listed in the following table:

Routine Maintenance

Maintenance Measure:	Frequency:
Mowing	Twice a year: mow the buffer area. Remove trash and debris, grass
	clippings and accumulated organic matter.
Mulch, fertilize, prune	Annually

Water Quality Units

Water quality units shall be inspected and cleaned in strict accordance with the manufacturer's recommendations and requirements. Clean the units using the method specified by the manufacturer.