

尜SLR

Deming Street Multi-Family Development

240 Deming Street, South Windsor, Connecticut Drainage Report

Prepared for: Metro Realty

6 Executive Drive, Suite 100 Farmington, CT 06032

Prepared by:

SLR International Corporation

99 Realty Drive, Cheshire, Connecticut, 06410

SLR Project No.: 141.13571.00069

June 28, 2023

Making Sustainability Happen

Drainage Report

Deming Street Multi-Family Development 240 Deming Street South Windsor, Connecticut June 28, 2023 SLR #141.13571.00069

This Drainage Report has been prepared in support of the proposed multi-family development at 240 Deming Street in the town of South Windsor, Connecticut. The development will add multiple buildings, a new parking lot, sidewalks, and all associated site infrastructure.

Figure 1 -#240 Deming Road

Table 1 – Stormwater Data

Parcel Size Total	6.324 acres
Existing Impervious Area (Watershed Area)	0.81 acres
Proposed Impervious Area (Watershed Area)	2.63 acres
Soil Type (Hydrologic Soil Group)	"B" and "C"
Existing Land Use	Woods, open space, parking lot, sidewalk, building
Proposed Land Use	Woods, open space, parking lot, sidewalk, building
Design Storm for Stormwater Management	No increases in peak rates of runoff for the 2-, 10-, 25-, 50-, and 100-year storms; Connecticut Department of Energy & Environmental Protection (CTDEEP) water quality flow treatment (WQF), water quality volume (WQV), and groundwater recharge volume (GRV)
Water Quality Measures	Catch basins with 2-foot sumps, retention storage for WQV and GRV, hydrodynamic separator
Design Storm for Storm Drainage	10-year storm
Federal Emergency Management Agency (FEMA) Special Flood Hazard Areas	Area of Minimal Flood Hazard (Zone X)
Connecticut Department of Energy & Environmental Protection Aquifer Protection Areas	Not applicable

Stormwater Management Approach

The proposed stormwater management system for the project focuses on providing water quality management while attenuating proposed peak-flow. Water quality treatment in accordance with the CTDEEP requirements for water quality volume (WQV), groundwater recharge volume (GRV), and water quality flow (WQF) is provided. The proposed stormwater treatment train consists of catch basins with 2-foot sumps, retention storage for the WQV and GRV, and a hydrodynamic separator.

The computer program entitled *Hydraflow Storm Sewers Extension for AutoCAD*[®] *Civil 3D*[®] *2023* by Autodesk, Inc. was used for designing the proposed storm drainage collection system. Storm drainage computations performed include pipe capacity and hydraulic grade line calculations. The contributing watershed to each individual catch basin inlet was delineated to determine the drainage area and land coverage. These values were used to determine the

stormwater runoff to each inlet using the Rational Method. The rainfall intensities for the site were obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 10, Precipitation Frequency Data Server (PFDS). The proposed storm drainage system is designed to provide adequate capacity to convey the 10-year storm event.

Water Quality Management

Water quality measures or Best Management Practices (BMPs) have been incorporated into the design to maintain water quality to provide protection of the areas downgradient of the proposed development. The proposed stormwater management system will include catch basins with 2-foot sumps, an underground chamber system with retention storage, and a hydrodynamic separator.

The CTDEEP 2004 Stormwater Quality Manual (Chapter 7) recommends methods for sizing stormwater treatment measures with the WQV and GRV computations. The WQV addresses the initial stormwater runoff also commonly referred to as the "first-flush" runoff. The WQV provides adequate volume to store the initial 1-inch of runoff, which tends to contain the highest concentrations of potential pollutants. Per the *Stormwater Quality* Manual, the GRV is the post-development design recharge volume required to minimize the loss of annual pre-development groundwater recharge, determined as a function of site soils and the amount of impervious cover on the site. The GRV is a smaller volume than the WQV and is contained within the total WQV. The total WQV required for the proposed project is 0.190 acre-feet and will be provided as retention volume within the underground chamber system below the lowest orifice of the outlet control structure.

A hydrodynamic separator, such as a *Cascade*[®] device manufactured by Contech Engineered Solutions, will be installed in the proposed storm drainage system prior to discharging stormwater to the underground chamber system. This unit will further remove suspended solids before discharging downgradient, which will in turn remove other pollutants that tend to attach to the suspended solids and effectively remove other debris and floatables that may be present in stormwater runoff. The hydrodynamic separator has been designed to meet criteria recommended by the CTDEEP *2004 Stormwater Quality Manual*. The device was designed based on the determined WQF, which is the peak-flow rate associated with the Water Quality Volume (WQV) and sized based on the manufacturer's specifications.

Hydrologic Analysis

A hydrologic analysis was conducted to analyze the predevelopment and postdevelopment peak-flow rates from the site. Three analysis points that receive runoff from the site were selected. Analysis Point A represents the western property boundary that receives overland flow from the site. Analysis Point B represents the drainage system located on-site that receives stormwater runoff from the developed portion of the site as well as the upstream property to the east, and which discharges west of the property. Analysis Point C represents the storm drainage system located in Deming Street that receives runoff from the property via overland

flow. The total watershed area delineated is approximately 7.9 acres under both existing and proposed conditions.

The method of predicting the surface water runoff rates utilized in this analysis was a computer program titled *HydroCAD 10.20-2g* by HydroCAD Software Solutions LLC. The *HydroCAD* program is a computer model that utilizes the methodologies set forth in the *Technical Release No. 55* (TR-55) manual and *Technical Release No. 20* (TR-20) computer model, originally developed by the United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS). The *HydroCAD* computer modeling program is primarily used for conducting hydrology studies such as this one.

The *HydroCAD* computer program forecasts the rate of surface water runoff based upon several factors. The input data includes information on land use, hydrologic soil type, vegetation, contributing watershed area, time of concentration, rainfall data, storage volumes, and the hydraulic capacity of structures. The computer model predicts the amount of runoff as a function of time, with the ability to include the attenuation effect due to dams, lakes, large wetlands, floodplains, and stormwater management basins. The input data for rainfalls with statistical recurrence frequencies of 2, 10, 25, 50, and 100 years was obtained from the NOAA Atlas 14, Volume 10 database. The corresponding rainfall totals are listed below.

Storm Frequency	Rainfall (inches)
2-year	3.11
10-year	4.92
25-year	6.05
50-year	6.88
100-year	7.79

Land use for the site under existing and proposed conditions was determined from field survey and aerial photogrammetry. Land use types used in the analysis included woods, grassed or open space, building, and impervious (paved) cover. Soil types in the watershed were determined from the CTDEEP Geographic Information System (GIS) database of the USDA-NRCS soil survey for Hartford County, Connecticut. For the analysis, the site was determined to contain hydrologic soil types "B" and "C" as classified by USDA-NRCS. Composite runoff Curve Numbers (CN) for each subwatershed were calculated based on the different land use and soil types. The time of concentration (Tc) was estimated for each subwatershed using the TR-55 methodology and was computed by summing all travel times through the watershed as sheet flow, shallow concentrated flow, and channel flow.

The existing conditions were modeled with the *HydroCAD* program to determine the peak-flow rates for the various storm events at each analysis point. A revised model was developed incorporating the proposed site conditions and the underground chamber system. The flows obtained with the revised model were then compared to the results of the existing conditions model. Peak-flow rates from the project site were controlled by the storage volume provided within the underground detention system. The following peak rates of runoff were obtained from the *HydroCAD* hydrology results:

Analysis I	Analysis Point A – Western Property Boundary														
Peak Runoff Rate (cubic feet per second)															
Storm Frequency (years)	2	10	25	50	100										
Existing Conditions	8.8	15.4	20.2	23.9	28.0										
Proposed Conditions	7.8	11.8	17.1	21.1	25.3										

Underground Chamber System 110*													
	Water Surface Elevation (feet)												
Storm Frequency (years)	2	10	25	50	100								
Proposed Conditions 127.7 129.1 129.5 129.7 129.9													

*Inner top of chamber elevation = 130.1

Analysis Point B – On-Site Storm Drainage System														
	Peak Runoff Rate (cubic feet per second)													
Storm Frequency (years)	2	10	25	50	100									
Existing Conditions	2.0	4.8	6.7	8.1	9.6									
Proposed Conditions	1.0	3.8	6.0	7.7	9.6									

Analysis Point C – Storm Drainage System in Deming Street													
Peak Runoff Rate (cubic feet per second)													
Storm Frequency (years)	2	10	25	50	100								
Existing Conditions	0.0	0.3	0.5	0.7	0.9								
Proposed Conditions	0.0	0.3	0.5	0.7	0.9								

Conclusion

The results of the hydrologic analysis demonstrate that there will be no increases in peak-flow rates from the proposed development. This was achieved for the storm events modeled through a planned stormwater management system with detention provided in the underground chamber system. The proposed development will also introduce a new stormwater treatment train

consisting of catch basins with 2-foot sumps, a hydrodynamic separator, and retention storage of the WQV and GRV within the underground chamber system.

All supporting documentation and stormwater-related computations are attached to this report along with the *HydroCAD* model results for stormwater management and *Hydraflow Storm Sewers* model results for the proposed storm drainage system. Illustrative Watershed Maps for both existing and proposed conditions are also attached to this report.

Appendices

- Appendix A United States Geological Survey Location Map
- Appendix B Federal Emergency Management Agency Flood Insurance Rate Map
- Appendix C Natural Resources Conservation Service Hydrologic Soil Group Map
- Appendix D Storm Drainage Computations
- Appendix E Water Quality Computations
- Appendix F Hydrologic Analysis Input Computations
- Appendix G Hydrologic Analysis Computer Model Results
- Appendix H Watershed Maps

13571.00069.jn2823.rpt.docx

Appendix A United States Geological Survey Location Map

Deming Street Multi-Family Development

240 Deming Street, South Windsor, Connecticut

Drainage Report

Prepared for: Metro Realty 6 Executive Drive, Suite 100 Farmington, CT 06032

SLR Project No.: 141.13571.00069

June 28, 2023

Copyright SLR Consulting, Inc - 2023

Appendix B FEMA Flood Insurance Rate Map

Deming Street Multi-Family Development

240 Deming Street, South Windsor, Connecticut

Drainage Report

Prepared for: Metro Realty 6 Executive Drive, Suite 100 Farmington, CT 06032

SLR Project No.: 141.13571.00069

June 28, 2023

National Flood Hazard Layer FIRMette

Legend

72°33'19"W 41°49'29"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD one AE HAZARD AREAS **Regulatory Floodway** Zone AE 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage FL0[®]DWAY areas of less than one square mile Zone X Zone AE Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D H NO SCREEN Area of Minimal Flood Hazard Zone X S Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D Ρ - — – – Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation Town of South Windsor **Coastal Transect** Base Flood Elevation Line (BFE) 090036 Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** ----OTHER **Profile Baseline** AREA OF MININAL FEOD HAZARD FEATURES Hydrographic Feature **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 5/25/2023 at 11:53 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 72°32'41"W 41°49'2"N Feet 1:6.000 unmapped and unmodernized areas cannot be used for

250

1,000

500

1,500

2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

regulatory purposes.

Appendix C Natural Resources Conservation Service Hydrologic Soil Group Map

Deming Street Multi-Family Development

240 Deming Street, South Windsor, Connecticut

Drainage Report

Prepared for: Metro Realty 6 Executive Drive, Suite 100 Farmington, CT 06032

SLR Project No.: 141.13571.00069

June 28, 2023

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
12	Raypol silt loam	C/D	1.6	9.8%
53A	Wapping very fine sandy loam, 0 to 3 percent slopes	С	0.0	0.0%
66B	Narragansett silt loam, 2 to 8 percent slopes	В	3.3	20.6%
66C	Narragansett silt loam, 8 to 15 percent slopes	В	2.2	14.0%
701B	Ninigret fine sandy loam, 3 to 8 percent slopes	С	0.0	0.3%
702B	Tisbury silt loam, 3 to 8 percent slopes	С	6.2	39.0%
704B	Enfield silt loam, 3 to 8 percent slopes	В	2.6	16.4%
Totals for Area of Intere	est		15.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Appendix D Storm Drainage Computations

Deming Street Multi-Family Development

240 Deming Street, South Windsor, Connecticut

Drainage Report

Prepared for: Metro Realty 6 Executive Drive, Suite 100 Farmington, CT 06032

SLR Project No.: 141.13571.00069

June 28, 2023

Project	: Multi-Family De	velopment		By:	LCD	Date:	6/28/23				
Location	: South Windsor,	CT	Checked: MCB Date: 6/28/23								
Basin Name	Impervious Area C=0.9 (sf)	Grassed Area C=0.3 (sf)	Wooded Area C=0.2 (sf)	Total Area (sf)	Total Area (ac)	Weighted C	Tc (min)				
AD 4	753	817	0	1570	0.04	0.59	5.0				
CLCB 5	5417	920	0	6337	0.15	0.81	5.0				
AD 6	237	242	0	479	0.01	0.60	5.0				
AD 7	255	360	0	615	0.01	0.55	5.0				
CLCB 8	5900	2460	0	8360	0.19	0.72	5.0				
CCB 9	8003	1189	0	9192	0.21	0.82	5.0				
CLCB 10	4631	3982	0	8613	0.20	0.62	5.0				
CCB 11	4603	2240	0	6843	0.16	0.70	5.0				
CLCB 12	11798	2390	0	14187	0.33	0.80	5.0				
CCB 13	7104	166	0	7270	0.17	0.89	5.0				
CCB 14	5154	5952	0.14	0.82	5.0						
AD 15	160	373	0	534	0.01	0.48	5.0				
AD 16	339	339	339	339	339	614	0	952	0.02	0.51	5.0
YD 17	883	120	0	1003	0.02	0.83	5.0				
AD 18	898	1495	0	2392	0.05	0.53	5.0				
AD 19	159	270	0	429	0.01	0.52	5.0				
AD 22	851	6971	2687	10509	0.24	0.32	5.0				
CLCB 23	3963	558	0	4521	0.10	0.83	5.0				
AD 24	0	1494	0	1494	0.03	0.30	5.0				
CLCB 25	2030	820	0	2850	0.07	0.73	5.0				
CLCB 26	927	193	0	1120	0.03	0.80	5.0				
AD 27	0	7566	0	7566	0.17	0.30	5.0				
AD 28	329	578	0	907	0.02	0.52	5.0				
AD 29	518	1067	0	1585	0.04	0.50	5.0				
AD 31	0	0	48	0.00	0.30	5.0					
AD 33	0	1254	0	1254	0.03	0.30	5.0				
AD 34	974	38105	0	39079	0.90	0.31	10.0				
AD 35	9105	70666	252	80023	1.84	0.37	10.0				
AD 36	377	2506	1444	4326	0.10	0.32	5.0				
AD 37	254	2870	738	3862	0.09	0.32	5.0				

Rational Method Roof Drain System Calculations Project: Multi-Family Development By: LCD Date: 6/28/23 Location: South Windsor, CT Checked: MCB Date: 6/28/23 Total Roof Runoff to Proposed Storm Drainage System (In Hydraflow Model) BLDG B TO BLDG C TO AD BLDG D TO BLDG E TO BLDG F TO BLDG G TO BLDG A TO AD 7 AD 19 AD 27 AD 4 16 YD 17 AD 29 С 0.90 0.90 0.90 0.90 0.90 0.90 0.90 7.44 7.44 7.44 7.44 7.44 7.44 7.44 I А 0.16 0.16 0.14 0.10 0.10 0.10 0.10 Q 1.05 1.05 0.95 0.67 0.67 0.67 0.67

A*

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_& aerials

PF tabular

PDS-b	ased poir	nt precipit	ation freq	luency es	timates w	ith 90% co	onfidence	intervals	(in inche	s/hour) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.01	4.87	6.28	7.44	9.04	10.2	11.5	12.9	15.0	16.7
	(3.11-5.18)	(3.77-6.30)	(4.84-8.14)	(5.70-9.71)	(6.71-12.3)	(7.46-14.3)	(8.16-16.7)	(8.69-19.2)	(9.70-23.0)	(10.5-26.1)
10-min	2.84 (2.20-3.67)	3.45 (2.66-4.46)	4.44 (3.42-5.76)	5.27 (4.04-6.88)	6.40 (4.76-8.74)	7.25 (5.28-10.1)	8.15 (5.78-11.8)	9.16 (6.16-13.6)	10.6 (6.87-16.3)	11.8 (7.47-18.5)
15-min	2.23 (1.72-2.88)	2.70 (2.09-3.50)	3.48 (2.68-4.52)	4.13 (3.16-5.39)	5.02 (3.73-6.86)	5.69 (4.14-7.94)	6.39 (4.53-9.26)	7.18 (4.83-10.6)	8.32 (5.39-12.8)	9.26 (5.86-14.5)
30-min	1.50 (1.16-1.93)	1.82 (1.41-2.36)	2.35 (1.81-3.05)	2.79 (2.14-3.64)	3.40 (2.52-4.64)	3.85 4.33 (2.80-5.37) (3.07-6.2		4.87 (3.27-7.21)	5.64 (3.65-8.65)	6.27 (3.97-9.82)
60-min	0.941	1.14	1.48	1.76	2.14	2.43	2.73	3.07	3.56	3.96
	(0.728-1.22)	(0.885-1.48)	(1.14-1.92)	(1.35-2.29)	(1.59-2.92)	(1.77-3.39)	(1.93-3.95)	(2.06-4.54)	(2.30-5.46)	(2.50-6.19)
2-hr	0.607	0.735	0.944	1.12	1.36	1.53	1.72	1.95	2.29	2.58
	(0.472-0.780)	(0.571-0.946)	(0.731-1.22)	(0.861-1.45)	(1.02-1.85)	(1.13-2.14)	(1.24-2.50)	(1.31-2.87)	(1.49-3.49)	(1.64-4.00)
3-hr	0.466 (0.363-0.597)	0.563 (0.439-0.722)	0.723 (0.561-0.930)	0.855 (0.660-1.11)	1.04 (0.778-1.41)	1.17 (0.863-1.63)	1.32 (0.948-1.91)	1.49 (1.01-2.19)	1.76 (1.15-2.68)	2.00 (1.27-3.09)
6-hr	0.293	0.355	0.457	0.542	0.658	0.744	0.838	0.954	1.13	1.29
	(0.229-0.373)	(0.278-0.453)	(0.357-0.585)	(0.420-0.697)	(0.497-0.891)	(0.552-1.03)	(0.607-1.21)	(0.646-1.39)	(0.740-1.71)	(0.823-1.99)
12-hr	0.178 0.218		0.283	0.337	0.411	0.466	0.526	0.601	0.717	0.818
	(0.140-0.225) (0.171-0.27		(0.222-0.360)	(0.263-0.431)	(0.312-0.554)	(0.348-0.643)	(0.383-0.758)	(0.408-0.872)	(0.469-1.08)	(0.524-1.25)
24-hr	0.104	0.129	0.170	0.205	0.252	0.286	0.324	0.373	0.449	0.516
	(0.082-0.131)	(0.102-0.163)	(0.134-0.216)	(0.160-0.261)	(0.192-0.338)	(0.215-0.394)	(0.238-0.467)	(0.254-0.537)	(0.295-0.670)	(0.331-0.785)
2-day	0.058	0.074	0.099	0.119	0.148	0.168	0.192	0.222	0.272	0.316
	(0.046-0.073)	(0.059-0.093)	(0.078-0.124)	(0.094-0.151)	(0.113-0.198)	(0.127-0.232)	(0.142-0.276)	(0.152-0.319)	(0.179-0.404)	(0.204-0.478)
3-day	0.042	0.053	0.072	0.087	0.108	0.123	0.140	0.162	0.199	0.233
	(0.034-0.053)	(0.043-0.067)	(0.057-0.090)	(0.069-0.110)	(0.083-0.144)	(0.093-0.168)	(0.104-0.201)	(0.111-0.232)	(0.131-0.295)	(0.150-0.350)
4-day	0.034	0.043	0.057	0.069	0.086	0.098	0.112	0.130	0.159	0.186
	(0.027-0.042)	(0.034-0.054)	(0.046-0.072)	(0.055-0.088)	(0.066-0.115)	(0.075-0.134)	(0.083-0.161)	(0.089-0.185)	(0.105-0.235)	(0.120-0.279)
7-day	0.023	0.029	0.038	0.046	0.056	0.064	0.073	0.084	0.103	0.119
	(0.018-0.028)	(0.023-0.036)	(0.030-0.047)	(0.036-0.057)	(0.044-0.075)	(0.049-0.087)	(0.054-0.104)	(0.058-0.119)	(0.068-0.150)	(0.077-0.178)
10-day	0.018	0.023	0.030	0.035	0.043	0.049	0.055	0.064	0.077	0.088
	(0.015-0.023)	(0.018-0.028)	(0.024-0.037)	(0.028-0.044)	(0.033-0.057)	(0.037-0.066)	(0.041-0.078)	(0.044-0.090)	(0.051-0.112)	(0.057-0.131)
20-day	0.013	0.015	0.019	0.022	0.026	0.029	0.033	0.037	0.043	0.048
	(0.011-0.016)	(0.012-0.019)	(0.015-0.024)	(0.018-0.028)	(0.020-0.034)	(0.022-0.039)	(0.024-0.045)	(0.025-0.052)	(0.028-0.062)	(0.031-0.071)
30-day	0.011	0.012	0.015	0.017	0.020	0.022	0.024	0.027	0.030	0.033
	(0.009-0.014)	(0.010-0.015)	(0.012-0.019)	(0.014-0.021)	(0.015-0.026)	(0.017-0.029)	(0.018-0.033)	(0.019-0.038)	(0.020-0.044)	(0.022-0.049)
45-day	0.009	0.010	0.012	0.013	0.015	0.017	0.018	0.020	0.022	0.023
	(0.007-0.011)	(0.008-0.013)	(0.010-0.015)	(0.011-0.017)	(0.012-0.020)	(0.013-0.022)	(0.013-0.025)	(0.014-0.028)	(0.015-0.032)	(0.015-0.035)
60-day	0.008	0.009	0.010	0.011	0.013	0.014	0.015	0.016	0.018	0.018
	(0.006-0.010)	(0.007-0.011)	(0.008-0.012)	(0.009-0.014)	(0.010-0.016)	(0.010-0.018)	(0.011-0.020)	(0.011-0.022)	(0.012-0.025)	(0.012-0.027)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

Large scale terrain

Large scale map

Large scale aerial

Storm Sewer IDF Curves

Int. (in/hr) 14.00 -- 14.00 100-Yr 12.00 -— 12.00 50-Yr 10.00 -— 10.00 25-Yr 8.00 - 8.00 10-Yr 6.00 -6.00 5-Yr 4.00 -- 4.00 2-Yr 2.00 -- 2.00 1-Yr 0.00 -- 0.00 0 5 10 15 20 25 30 35 40 50 60 45 55 Time (min)

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 28 2023

10-IN HDPE 0.5%

Circular		Highlighted	
Diameter (ft)	= 0.83	Depth (ft)	= 0.83
	Q = 1.05 cfs <	Q (cfs)	= 1.660
		Area (sqft)	= 0.54
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.07
Slope (%)	= 0.50	Wetted Perim (ft)	= 2.61
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.58
		Top Width (ft)	= 0.00
Calculations		EGL (ft)	= 0.98
Compute by:	Q vs Depth		
No. Increments	= 10		

Reach (ft)

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

Line		Alignment Flow Data									Physical	Data				Line ID	
NO.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	19.000	91.189	DrGrt	0.00	0.01	0.30	5.0	126.80	1.05	127.00	15	Cir	0.012	1.41	130.80	MH 30 - AD 31
2	1	142.000	-67.864	мн	0.00	0.00	0.00	0.0	127.00	0.63	127.90	15	Cir	0.012	0.15	139.60	AD 31 - MH 32
3	2	178.000	0.155	DrGrt	0.00	0.03	0.30	5.0	127.90	1.01	129.70	15	Cir	0.012	1.45	139.60	MH 32 - AD 33
4	3	33.000	-74.235	DrGrt	0.00	0.90	0.31	10.0	129.70	0.91	130.00	15	Cir	0.012	0.56	139.00	AD 33 - AD 34
5	4	92.000	-18.761	DrGrt	0.00	1.84	0.37	10.0	130.00	1.09	131.00	15	Cir	0.012	0.50	136.00	AD 34 - AD 35
6	5	54.000	-1.081	DrGrt	0.00	0.10	0.32	5.0	131.00	0.93	131.50	12	Cir	0.012	0.50	136.00	AD 35 - AD 36
7	6	101.000	-4.300	DrGrt	0.00	0.09	0.32	5.0	131.50	0.79	132.30	12	Cir	0.012	1.00	135.30	AD 36 - A D 37
Project	File: Storr	n 100 stm										Number of	f lines: 7			Date: 6	/27/2023

Storm Sewer Tabulation

Station Len		Len	Drng A	rea	Rnoff	Area x	с	Тс		Rain	Total	Сар	Vel	Pipe	•	Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	To		Incr	Total	coen	Incr	Total	Inlet	Syst	-(1)	now	run		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	LIII¢	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	19.000	0.01	2.97	0.30	0.00	1.03	5.0	11.5	5.0	5.13	7.18	5.05	15	1.05	126.80	127.00	127.82	127.92	131.30	130.80	MH 30 - AD 31
2	1	142.000	0.00	2.96	0.00	0.00	1.03	0.0	11.0	5.1	5.23	5.57	5.16	15	0.63	127.00	127.90	127.96	128.86	130.80	139.60	AD 31 - MH 32
3	2	178.000	0.03	2.96	0.30	0.01	1.03	5.0	10.5	5.2	5.38	7.03	5.22	15	1.01	127.90	129.70	128.92	130.64	139.60	139.60	MH 32 - AD 33
4	3	33.000	0.90	2.93	0.31	0.28	1.02	10.0	10.3	5.3	5.36	0.07	5.43	15	0.91	129.70	130.00	130.64	130.94	139.60	139.00	AD 33 - AD 34
5	4	92.000	1.04	2.03	0.37	0.00	0.74	10.0	10.0	5.4	3.97	2.74	4.30	10	1.09	130.00	131.00	130.94	101.01	139.00	130.00	AD 34 - AD 35
7	5	101 000	0.10	0.19	0.32	0.03	0.00	5.0	5.0	7.4	0.42	3.71	1.55	12	0.93	131.00	131.50	131.01	132.40	136.00	135.00	
		101.000	0.00	0.00	0.02	0.00	0.00	0.0	0.0		0.21	0.10	1.07		0.10	101.00	102.00	101.77	102.10	100.00	100.00	
Proje	ct File:	Storm 1	100.stm													Number	of lines: 7			Run Dat	e: 6/27/20)23
NOT	ES:Inte	nsity = 3	5.57 / (I	nlet time	+ 3.70)	^ 0.72;	Return p	eriod =\	Yrs. 10;	c = cir	e = ellip	b = box										

Hydraulic Grade Line Computations

L	ine	Size	Q			D	ownstre	eam				Len				Upstr	eam				Chec	k	JL	Minor
		ín)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sɑft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sɑft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	- coem	ioss (ft)
-			()				(- 4)		()	()						(- 1- 7	()					()		
	1	15	5.13	126.80	127.82	1.02	0.97	4.79	0.44	128.26	0.000	19.000	127.00	127.92 j	0.92**	0.97	5.31	0.44	128.36	0.000	0.000	n/a	1.41	n/a
	2	15	5.23	127.00	127.96	0.96*	1.01	5.16	0.41	128.38	0.633	142.00	0127.90	128.86	0.96	1.01	5.17	0.41	129.28	0.635	0.634	0.901	0.15	0.06
	3	15	5.38	127.90	128.92	1.02	0.99	5.00	0.46	129.38	0.000	178.00	0129.70	130.64 j	0.94**	0.99	5.44	0.46	131.10	0.000	0.000	n/a	1.45	0.67
	4	15	5.36	129.70	130.64	0.94	0.99	5.42	0.46	131.10	0.000	33.000	130.00	130.94 j	0.94**	0.99	5.43	0.46	131.40	0.000	0.000	n/a	0.56	n/a
	5	15	3.97	130.00	130.94	0.94	0.84	4.02	0.35	131.29	0.000	92.000	131.00	131.81 j	0.81**	0.84	4.75	0.35	132.16	0.000	0.000	n/a	0.50	0.18
	6	12	0.42	131.00	131.81	0.81	0.17	0.62	0.10	131.90	0.000	54.000	131.50	131.77	0.27**	0.17	2.48	0.10	131.86	0.000	0.000	n/a	0.50	0.05
	7	12	0.21	131.50	131.77	0.27	0.10	1.27	0.07	131.83	0.000	101.00	0132.30	132.49 j	0.19**	0.10	2.06	0.07	132.56	0.000	0.000	n/a	1.00	0.07
	Proje	ct File: S	Storm 10	0.stm											N	umber o	f lines: 7			Ru	n Date:	6/27/202	:3	
	Note	s:* depth	n assum	ed; ** Critio	cal depth.;	j-Line co	ontains h	yd. jump	; c = c	ir e = ellip	b = box													

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

Line No.		Alignr	ment			Flow	Data					Physical	Data				Line ID
NO.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	4.000	105.164	МН	0.00	0.00	0.00	5.0	125.30	2.50	125.40	24	Cir	0.012	0.15	133.70	UG-MH 3
2	1	33.000	5.840	Grate	0.00	0.15	0.81	5.0	125.40	1.82	126.00	24	Cir	0.012	2.03	135.00	MH 3-CLCB 5
3	2	22.000	-98.762	Grate	0.00	0.19	0.72	5.0	126.00	1.36	126.30	24	Cir	0.012	1.50	135.00	CLCB 5-CLCB 8
4	3	87.000	-85.778	Grate	0.00	0.20	0.62	5.0	126.30	1.38	127.50	24	Cir	0.012	2.13	133.70	CLCB 8-CLCB 10
5	4	126.000	107.490	Grate	0.00	0.10	0.83	5.0	128.70	1.98	131.20	12	Cir	0.012	1.44	136.00	CLCB 10-CLCB 23
6	5	70.000	-18.732	DrGrt	0.00	0.03	0.30	5.0	132.00	0.71	132.50	12	Cir	0.012	1.00	135.50	CLCB 23-AD 24
7	5	114.000	72.730	Grate	0.00	0.07	0.73	5.0	131.20	0.53	131.80	12	Cir	0.012	2.10	137.90	CLCB 23-CLCB 25
8	7	31.000	-91.666	DrGrt	0.00	0.02	0.52	5.0	131.80	0.65	132.00	12	Cir	0.012	1.50	137.90	CLCB 25-AD 28
9	8	31.000	-88.333	DrGrt	0.67	0.04	0.50	5.0	132.00	7.42	134.30	12	Cir	0.012	1.00	137.60	AD 28-AD 29
10	7	23.000	90.880	Grate	0.00	0.03	0.80	5.0	131.80	9.57	134.00	12	Cir	0.012	1.00	137.90	CLCB 25-CLCB 26
11	7	106.000	1.653	DrGrt	0.67	0.17	0.30	5.0	131.80	3.49	135.50	12	Cir	0.012	1.00	138.80	CLCB 25-AD 27
12	3	107.000	87.189	Comb	0.00	0.21	0.82	5.0	131.00	2.99	134.20	12	Cir	0.012	1.00	137.20	CLCB 8-CCB 9
13	2	31.000	61.775	DrGrt	0.00	0.01	0.60	5.0	126.60	2.58	127.40	12	Cir	0.012	1.50	135.50	CLCB 5-AD 6
14	13	24.000	-61.925	DrGrt	1.05	0.01	0.55	5.0	130.00	0.83	130.20	12	Cir	0.012	1.00	135.50	AD 6-AD 7
15	4	46.000	13.677	Comb	0.00	0.16	0.70	5.0	127.50	1.09	128.00	18	Cir	0.012	1.91	132.60	CLCB 10-CCB 11
16	15	71.000	76.587	Comb	0.00	0.17	0.89	5.0	128.00	0.56	128.40	15	Cir	0.012	1.44	134.30	CCB 11-CCB 13
17	16	24.000	-72.210	Comb	0.00	0.14	0.82	5.0	128.40	0.83	128.60	15	Cir	0.012	1.39	134.20	CCB 13-CLCB 14
18	17	33.000	-10.016	DrGrt	0.00	0.01	0.48	5.0	128.60	3.03	129.60	12	Cir	0.012	1.50	133.90	CLCB 14-AD 15
19	18	70.000	-99.386	DrGrt	0.95	0.02	0.51	5.0	129.60	0.71	130.10	12	Cir	0.012	1.00	133.40	AD 15-AD 16
20	17	59.000	65.153	DrGrt	0.67	0.02	0.83	5.0	128.60	0.51	128.90	15	Cir	0.012	1.50	134.80	CLCB 14-YD 17
21	20	44.000	95.992	DrGrt	0.00	0.05	0.53	5.0	128.90	5.91	131.50	12	Cir	0.012	1.00	135.30	YD 17-AD 18
22	20	26.000	-76.344	DrGrt	0.67	0.01	0.52	5.0	128.90	0.77	129.10	12	Cir	0.012	1.00	135.10	YD 17-AD 19
23	20	75.000	-20.537	DrGrt	0.00	0.24	0.32	5.0	128.90	2.80	131.00	12	Cir	0.012	1.00	133.00	YD 17-AD 22
Project I	File: Storm	n 110.stm	·				·			·		Number o	of lines: 25	·		Date: 6/	27/2023

Storm Sewer Inventory Report

Line		Align	ment			Flow	Data					Physical	Data				Line ID
NO.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
24	15	29.000	-54.828	Grate	0.00	0.33	0.80	5.0	128.00	2.76	128.80	12	Cir	0.012	1.00	132.20	CCB 11-CLCB 12
25	13	102.000	112.820	DrGrt	1.05	0.04	0.59	5.0	127.40	2.75	130.20	12	Cir	0.012	1.00	133.50	AD 6-AD 4
Project I	File: Storn	n 110.stm										Number o	f lines: 25			Date: 6	/27/2023

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	To		Incr	Total	coen	Incr	Total	Inlet	Syst	-(1)	now	run		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	4.000	0.00	2.42	0.00	0.00	1.62	5.0	9.8	5.4	14.50	38.74	4.62	24	2.50	125.30	125.40	129.10	129.11	0.00	133.70	UG-MH 3
2	1	33.000	0.15	2.42	0.81	0.12	1.62	5.0	9.7	5.4	14.56	33.04	4.63	24	1.82	125.40	126.00	129.16	129.28	133.70	135.00	MH 3-CLCB 5
3	2	22.000	0.19	2.21	0.72	0.14	1.46	5.0	9.6	5.5	11.65	28.61	3.71	24	1.36	126.00	126.30	129.96	130.01	135.00	135.00	CLCB 5-CLCB 8
4	3	87.000	0.20	1.81	0.62	0.12	1.15	5.0	9.1	5.6	10.11	28.78	3.22	24	1.38	126.30	127.50	130.33	130.48	135.00	133.70	CLCB 8-CLCB 10
5	4	126.000	0.10	0.46	0.83	0.08	0.25	5.0	6.2	6.7	3.02	5.43	4.33	12	1.98	128.70	131.20	130.82	131.94	133.70	136.00	CLCB 10-CLCB 2
6	5	70.000	0.03	0.03	0.30	0.01	0.01	5.0	5.0	7.4	0.07	3.26	1.59	12	0.71	132.00	132.50	132.10	132.61	136.00 135.50		CLCB 23-AD 24
7	5	114.000	0.07	0.33	0.73	0.05	0.16	5.0	5.8	7.0	2.43	2.80	3.99	12	0.53	131.20	131.80	131.94	132.51	136.00	137.90	CLCB 23-CLCB 2
8	7	31.000	0.02	0.06	0.52	0.01	0.03	5.0	5.3	7.3	0.89	3.10	1.13	12	0.65	131.80	132.00	133.05	133.07	137.90	137.90	CLCB 25-AD 28
9	8	31.000	0.04	0.04	0.50	0.02	0.02	5.0	5.0	7.4	0.82	10.51	2.03	12	7.42	132.00	134.30	133.10	134.68	137.90	137.60	AD 28-AD 29
10	7	23.000	0.03	0.03	0.80	0.02	0.02	5.0	5.0	7.4	0.18	11.93	1.10	12	9.57	131.80	134.00	133.05	134.17	137.90	137.90	CLCB 25-CLCB 2
11	7	106.000	0.17	0.17	0.30	0.05	0.05	5.0	5.0	7.4	1.05	7.21	2.29	12	3.49	131.80	135.50	133.05	135.93	137.90	138.80	CLCB 25-AD 27
12	3	107.000	0.21	0.21	0.82	0.17	0.17	5.0	5.0	7.4	1.28	6.67	5.01	12	2.99	131.00	134.20	131.30	134.68	135.00	137.20	CLCB 8-CCB 9
13	2	31.000	0.01	0.06	0.60	0.01	0.04	5.0	5.7	7.0	2.35	6.20	2.99	12	2.58	126.60	127.40	129.96	130.07	135.00	135.50	CLCB 5-AD 6
14	13	24.000	0.01	0.01	0.55	0.01	0.01	5.0	5.0	7.4	1.09	3.52	3.62	12	0.83	130.00	130.20	130.38	130.64	135.50	135.50	AD 6-AD 7
15	4	46.000	0.16	1.15	0.70	0.11	0.78	5.0	8.9	5.7	6.73	11.86	3.81	18	1.09	127.50	128.00	130.82	130.98	133.70	132.60	CLCB 10-CCB 11
16	15	71.000	0.17	0.66	0.89	0.15	0.41	5.0	8.6	5.8	4.64	5.25	3.78	15	0.56	128.00	128.40	131.41	131.72	132.60	134.30	CCB 11-CCB 13
17	16	24.000	0.14	0.49	0.82	0.11	0.25	5.0	8.5	5.8	3.78	6.39	3.08	15	0.83	128.40	128.60	132.04	132.11	134.30	134.20	CCB 13-CLCB 14
18	17	33.000	0.01	0.03	0.48	0.00	0.02	5.0	5.9	6.9	1.05	6.72	1.34	12	3.03	128.60	129.60	132.32	132.34	134.20	133.90	CLCB 14-AD 15
19	18	70.000	0.02	0.02	0.51	0.01	0.01	5.0	5.0	7.4	1.03	3.26	1.31	12	0.71	129.60	130.10	132.39	132.43	133.90	133.40	AD 15-AD 16
20	17	59.000	0.02	0.32	0.83	0.02	0.13	5.0	7.9	6.0	2.10	4.99	1.71	15	0.51	128.60	128.90	132.32	132.37	134.20	134.80	CLCB 14-YD 17
21	20	44.000	0.05	0.05	0.53	0.03	0.03	5.0	5.0	7.4	0.20	9.38	0.25	12	5.91	128.90	131.50	132.44	132.44	134.80	135.30	YD 17-AD 18
22	20	26.000	0.01	0.01	0.52	0.01	0.01	5.0	5.0	7.4	0.71	3.38	0.90	12	0.77	128.90	129.10	132.44	132.45	134.80	135.10	YD 17-AD 19
Proie	Project File: Storm 110.stm												Number	of lines: 2	5		Run Da	⊥ te: 6/27/20)23			
			/ //						<i>.</i>													

NOTES:Intensity = 35.57 / (Inlet time + 3.70) ^ 0.72; Return period =Yrs. 10; c = cir e = ellip b = box

Storm Sewer Tabulation

Statio	'n	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	V HGL Elev Grnd / Rim Elev Line line							
Line	То		Incr	Total	_соеп	Incr	Total	Inlet	Syst	-(1)	TIOW	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up				
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)				
23	20	75.000	0.24	0.24	0.32	0.08	0.08	5.0	5.0	7.4	0.57	6.46	0.73	12	2.80	128.90	131.00	132.44	132.46	134.80	133.00	YD 17-AD 22			
24	15	29.000	0.33	0.33	0.80	0.26	0.26	5.0	5.0	7.4	1.96	6.41	2.50	12	2.76	128.00	128.80	131.41	131.49	132.60	132.20	CCB 11-CLCB 12			
25	13	102.000	0.04	0.04	0.59	0.02	0.02	5.0	5.0	7.4	1.23	6.39	2.49	12	2.75	127.40	130.20	130.28	130.67	135.50	133.50	AD 6-AD 4			
Proje	ect File:	Storm 2	110.stm			1	1	1		1	1		1			Numbe	r of lines: 2	:5	1	Run Da	te: 6/27/20)23			
NOT	ES:Inte	nsitv = 3	5.57 / (1	nlet time	e + 3 70)	^ 0.72·	Return n	eriod ='	Ýrs. 10 ·	c = cir	e = ellir	b = box													
	ES.Inte	nsity = 3	0.577 (1	mer ume	= + 3.70)	0.72;	rreturn p		ris. iu ;	C = CII	e – eiii	אסמ≃ מי													

Hydraulic Grade Line Computations

L	ine Size	Q			D	ownstro	eam				Len			Chec	k	JL	Minor						
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy Ioss (ft)	(К)	ioss (ft)
	1 24	14.50	125.30	129.10	2.00	3.14	4.62	0.33	129.43	0.350	4.000	125.40	129.11	2.00	3.14	4.62	0.33	129.45	0.350	0.350	0.014	0.15	0.05
	2 24	14.56	125.40	129.16	2.00	3.14	4.63	0.33	129.50	0.353	33.000	126.00	129.28	2.00	3.14	4.63	0.33	129.61	0.353	0.353	0.116	2.03	0.68
	3 24	11.65	126.00	129.96	2.00	3.14	3.71	0.21	130.17	0.226	22.000	126.30	130.01	2.00	3.14	3.71	0.21	130.22	0.226	0.226	0.050	1.50	0.32
	4 24	10.11	126.30	130.33	2.00	3.14	3.22	0.16	130.49	0.170	87.000	127.50	130.48	2.00	3.14	3.22	0.16	130.64	0.170	0.170	0.148	2.13	0.34
	5 12	3.02	128.70	130.82	1.00	0.63	3.84	0.23	131.05	0.612	126.00	0131.20	131.94 j	0.74**	0.63	4.81	0.36	132.30	0.749	0.680	n/a	1.44	n/a
	6 12	0.07	132.00	132.10	0.10*	0.04	1.65	0.04	132.14	0.000	70.000	132.50	132.61	0.11**	0.04	1.52	0.04	132.64	0.000	0.000	n/a	1.00	0.04
	7 12	2.43	131.20	131.94	0.74	0.63	3.88	0.23	132.18	0.488	114.00	0131.80	132.51	0.71	0.60	4.09	0.26	132.77	0.549	0.518	0.591	2.10	0.55
	8 12	0.89	131.80	133.05	1.00	0.79	1.14	0.02	133.07	0.053	31.000	132.00	133.07	1.00	0.79	1.13	0.02	133.09	0.053	0.053	0.017	1.50	0.03
	9 12	0.82	132.00	133.10	1.00	0.27	1.04	0.02	133.12	0.045	31.000	134.30	134.68 j	0.38**	0.27	3.01	0.14	134.82	0.488	0.267	n/a	1.00	0.14
	10 12	0.18	131.80	133.05	1.00	0.09	0.23	0.00	133.06	0.002	23.000	134.00	134.17 j	0.17**	0.09	1.97	0.06	134.23	0.506	0.254	n/a	1.00	n/a
	11 12	1.05	131.80	133.05	1.00	0.32	1.34	0.03	133.08	0.074	106.00	0135.50	135.93 j	0.43**	0.32	3.25	0.16	136.09	0.500	0.287	n/a	1.00	0.16
	12 12	1.28	131.00	131.30	0.30*	0.20	6.55	0.19	131.48	0.000	107.00	0134.20	134.68	0.48**	0.37	3.46	0.19	134.86	0.000	0.000	n/a	1.00	0.19
	13 12	2.35	126.60	129.96	1.00	0.79	2.99	0.14	130.10	0.370	31.000	127.40	130.07	1.00	0.79	2.99	0.14	130.21	0.370	0.370	0.115	1.50	0.21
	14 12	1.09	130.00	130.38	0.38*	0.28	3.95	0.17	130.55	0.000	24.000	130.20	130.64	0.44**	0.33	3.28	0.17	130.81	0.000	0.000	n/a	1.00	n/a
	15 18	6.73	127.50	130.82	1.50	1.77	3.81	0.23	131.05	0.350	46.000	128.00	130.98	1.50	1.77	3.81	0.23	131.21	0.350	0.350	0.161	1.91	0.43
	16 15	4.64	128.00	131.41	1.25	1.23	3.78	0.22	131.63	0.440	71.000	128.40	131.72	1.25	1.23	3.78	0.22	131.95	0.440	0.440	0.312	1.44	0.32
	17 15	3.78	128.40	132.04	1.25	1.23	3.08	0.15	132.19	0.291	24.000	128.60	132.11	1.25	1.23	3.08	0.15	132.26	0.291	0.291	0.070	1.39	0.20
	18 12	1.05	128.60	132.32	1.00	0.79	1.34	0.03	132.35	0.075	33.000	129.60	132.34	1.00	0.79	1.34	0.03	132.37	0.075	0.075	0.025	1.50	0.04
	19 12	1.03	129.60	132.39	1.00	0.79	1.31	0.03	132.41	0.071	70.000	130.10	132.43	1.00	0.79	1.31	0.03	132.46	0.071	0.071	0.050	1.00	0.03
	20 15	2.10	128.60	132.32	1.25	1.23	1.71	0.05	132.36	0.090	59.000	128.90	132.37	1.25	1.23	1.71	0.05	132.42	0.090	0.090	0.053	1.50	0.07
	21 12	0.20	128.90	132.44	1.00	0.79	0.25	0.00	132.44	0.003	44.000	131.50	132.44	0.94	0.77	0.26	0.00	132.44	0.002	0.002	0.001	1.00	0.00
	22 12	0.71	128.90	132.44	1.00	0.79	0.90	0.01	132.45	0.034	26.000	129.10	132.45	1.00	0.79	0.90	0.01	132.46	0.034	0.034	0.009	1.00	0.01
	Project File:	Storm 11	0.stm			1	1		1					N	umber c	f lines: 2	:5		Rur	n Date: (5/27/202	3	1
$\left \right $	Notes: * dept	h assum	ed; ** Critio	cal depth.;	j-Line co	ontains h	ıyd. jump	; c = c	ir e = ellip	b = box													

Hydraulic Grade Line Computations

L	ine	Size	Q			D	ownstre	am				Len				Upstr	eam				Chec	k	JL	Minor
		(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	(K)	(ft)
-		. ,																						. ,
	23	12	0.57	128.90	132.44	1.00	0.79	0.73	0.01	132.45	0.022	75.000	131.00	132.46	1.00	0.79	0.73	0.01	132.46	0.022	0.022	0.016	1.00	0.01
	24	12	1.96	128.00	131.41	1.00	0.79	2.50	0.10	131.51	0.259	29.000	128.80	131.49	1.00	0.79	2.50	0.10	131.58	0.259	0.259	0.075	1.00	0.10
	25	12	1.23	127.40	130.28	1.00	0.36	1.56	0.04	130.32	0.101	102.00	0130.20	130.67 j	0.47**	0.36	3.41	0.18	130.85	0.512	0.306	n/a	1.00	n/a
\vdash	Proie	ect File: S	L Storm 11	l 0.stm											 N	umber o	f lines: 2	:5		Rur	Date: (5/27/202	3	
\vdash	Note					i Lino co	ntoino h	ud iumon			h = hc:												-	
	INOTE	s. aeptr	assum	eu; Critic	cai deptn.;	j-∟ine co	mains h	ya. jump	; c = c	i e = emp	xoa = u													

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Inventory Report

Line		Align	ment			Flow	Data					Physical	Data				Line ID
NO.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	51.000	56.911	None	15.75	0.00	0.00	0.0	121.90	2.16	123.00	18	Cir	0.012	1.00	133.80	FES 1 - OCS 110
Project	File: Outle	et 110.stm										Number o	f lines: 1			Date: 6	/27/2023
Drng Area Station Rnoff Area x C Тс Rain Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID Len Total coeff (I) flow full Line То Syst Dn Up Up Incr Total Incr Total Inlet Size Slope Dn Up Dn Line (ft) (C) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) (ac) (ac) (min) 123.50 1 End 51.000 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 15.75 16.71 8.91 18 2.16 121.90 123.00 124.50 123.29 133.80 FES 1 - OCS 110 Project File: Outlet 110.stm Number of lines: 1 Run Date: 6/27/2023 NOTES:Intensity = 56.23 / (Inlet time + 3.90) ^ 0.73; Return period =Yrs. 100 ; c = cir e = ellip b = box

Storm Sewer Tabulation

Page 1

Hydraulic Grade Line Computations

Lin	e Siz	ze	Q			D	ownstre	am				Len	.en Upstream						Check JL		JL	Minor		
			(Invert elev	HGL elev	Depth	Area	Vel	Vel head	EGL elev	Sf	(54)	Invert elev	HGL elev	Depth	Area	Vel	Vel head	EGL elev	Sf	Ave Sf	Enrgy loss	COEII	1055
	(inj)	(cts)	(π)	(π)	(π)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(11)	(ft)	(ft)	(π)	(sqft)	(ft/s)	(π)	(ft)	(%)	(%)	(π)	(K)	(ft)
1		18	15.75	121.90	123.50	1.50	1.77	8.91	1.24	124.74	1.918	51.000	123.00	124.50	1.50	1.77	8.91	1.24	125.74	1.920	1.919	0.978	1.00	1.24
P	roject	File: O	utlet 11) D.stm											 N	Number of lines: 1			 In Date: 6/27/2023					
;	c = c	cire=e	ellip b =	box																				

Outlet Protection Calculations								
<u>Project:</u> Mu <u>Location:</u> De <u>Outlet I.D.</u> FE	Project:Multi-Family DevelopmentBy:MCBDate:6/28/2023Location:Deming Street, South Windsor, CTChecked:Date:Outlet I.D.FES 1							
*Based on Conn	ecticut DOT Drainage Ma	nual, Section 11.1	3					
Description: FES 1								
<u>Design Criteria</u>	(100-yr Storm Event):							
Q (cfs) = 15.	75	R _p (ft)=	1.5					
D (in) = 18		$S_{p}(ft) =$	1.5					
V (fps) = 8.9	1	Tw (ft)=	1.5					
D= Outlet pr V= Flow velc R _p = Maximu S _p = inside di T _w = Tailwate	D= Outlet pipe diameter (in) V= Flow velocity at discharge point (ft/s) R _p = Maximum inside pipe rise (ft) S _p = inside diametere for circular sections of maximum inside pipe span for non-circular sections (ft) T _w = Tailwater depth (ft)							
Based on Table	<u>11.13.1, A Preformed Sco</u>	our Hole is used O	ne Hait Pipe Rise Depre.	<u>ssion (Typ</u>	<u>e 1)</u>			
Rip Rap Stone	<u>Size:</u> od (ft) Din Don (Chasification	D. Stopo Sizo Poquir	od				
0 190	Modified	Specification	5 inches	eu				
0.150	Woulled		5 110105					
Preformed Sco	ur Hole Dimensions:							
$F = 0.5(R_p)$		=	0.75 ft					
$C = 3.0(S_p)+$	6.0(F)	=	9ft					
$B = 2.0(S_p) +$	6.0(F)	=	8ft					
d (Depth of S	Stone)	=	12 inches					

Appendix E Water Quality Computations

Deming Street Multi-Family Development

240 Deming Street, South Windsor, Connecticut

Drainage Report

Prepared for: Metro Realty 6 Executive Drive, Suite 100 Farmington, CT 06032

SLR Project No.: 141.13571.00069

June 28, 2023

STORMWATER QUALITY CALCULATIONS Water Quality Volume (WQV)

Basin	Total	Impervious	Percent	Volumetric	WQV	Total Volume	Total Volume
ID	Area (ac.)	Area (ac.)	Impervious	Runoff Coeff., R	(ac-ft)	Required (ac-ft)	Provided ^{1.} (ac-ft)
110	3.27	2.35	72%	0.70	0.190	0.190	0.194

^{1.-} Volume provided below lowest orifice

	(1.0 inches) x A x R				
wqv =	12				
Where:	WQV = Water Quality Volume in acre-feet A = Contributing Area in acres				
	R = 0.05 + 0.009 (I)				
	I = Site Imperviousness as percent				

STORMWATER QUALITY CALCULATIONS Water Quality Volume (WQV)

Groundwater Recharge Volume (GRV)

	GRV =	F	х	I.					
V	Vhere:	GRV = Groundwater Recharge in cubic feet							
		F = target	depth factor pe	er Hydrolo	ogic Soil Group in feet				
		l = net inci	rease in imperv	vious area	(redevelopment projects)				

Site: (Contains HSG E	3 & C)					
Surface	Existing		Proposed		Difference	
Impv. (HSG B)	13,723		11,104		-2,619	
Impv. (HSG C)	21,481		103,638		82,157	
Total	35,204		114,742		79,538	
GRV =	0.021	x	-2,619	=	-55.00	
	0.008	х	82,157	=	657.26	
					602	CF
		Total	GRV Required	=	602	CF
		Total	GRV Provided	=	8,472	CF

Table 7-4 **Groundwater Recharge Depth** NRCS Average Groundwater Hydrologic Annual Recharge Soil Group Depth (D) Recharge 0.4 inches А 18 inches/year В 12 inches/year 0.25 inches С 0.10 inches 6 inches/year D 3 inches/year 0 inches (waived)

Table 7-4 from CTDEEP Stormwater Quality Manual, 2004

ок

	SLR Consu	ulting					Project	13571.00069
	COMPUTA	QF)	Made By:	МСВ				
Subject:				•			Date:	6/28/2023
-		Multi	Chkd by:					
			Date:					
<u>MH 3</u>								
			Imperv.					
Contributing			Area	I otal Area				
Basins			(acres)	(acres)				
Total			2.35	3.27				
Table 4.1: W	/QV = (P)(R.,)(A)/12 =		0 190	acre-feet			
Where:		<u></u>		0.100				
I = % of Impe	ervious Cove	er =		72%				
$R_{\rm u}$ = volumet	tric runoff co	$\frac{7}{6}$ eff 0 05 + 0	009(1) =	0 697				
P = design n	recipitation (1 0" for wate	er quality sto	rm) =	1	inch		
$\Delta = site area$	(acres) =			3 27	acres =	0 0051	miles ²	
	(40103) -			0.21	40103 -	0.0001	mics	
Q = runoff de	epth (in wate	rshed inches	s) = [WQV(a	crefeet)]*[12	(inches/fc	ot)]/draina	de area (acr	es)
			Q =	0.697		/]		,
CN = 1000 /	[10+ 5P + 10	$DQ - 10(Q^2 +$	1.25QP) ^{0.5}]	=	97			
Where:								
Q = runoff de	epth (in wate	rshed inches	s)					
			t _c =	0.17	hours			
Type III Rain	fall Distributi	ion:						
From Table 4	4-1, la =	0.062		la/P =	0.062			
(TR-	-55)							
From Exhibit	4-III, q _u =	650	csm/in.					
(TR-	-55)							
WQF = (qu)(A)(Q) =	2.31	cfs		Cascade	CS-5 Flo	w = 3.5 cfs	

- 2. Compute the time of concentration (t_c) based on the methods described in Chapter 3 of TR-55. A minimum value of 0.167 hours (10 minutes) should be used. For sheet flow, the flow path should not be longer than 300 feet.
- 3. Using the computed CN, t_c, and drainage area (A) in acres, compute the peak discharge for the water quality storm (i.e., the water quality flow [WQF]), based on the procedures described in Chapter 4 of TR-55.

Table 4-1Iavalues for runoff curve numbers							
Curve I number (ii	1 1)	Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)
40 3.0 41 2.8 42 2.7 43 2.6 44 2.5 45 2.4 46 2.3 47 2.2 48 2.1 49 2.0 50 2.0 51 1.9 52 1.8	00 78 62 51 45 44 48 55 67 82 00 22 46	55	1.636 1.571 1.509 1.448 1.390 1.333 1.279 1.226 1.175 1.125 1.125 1.077 1.030 0.985	70	0.857 0.817 0.778 0.740 0.667 0.632 0.597 0.564 0.532 0.500 0.469 0.439	85 86 87 88 89 90 91 92 93 94 95 96 97	0.353 0.326 0.299 0.273 0.247 0.222 0.198 0.174 0.151 0.128 0.105 0.083 0.062
53 1.7 54 1.7	74 04	68 69	0.941 0.899	83 84	0.410	98	0.041

O Read initial abstraction (I_a) from Table 4-1 in Chapter 4 of TR-55 (reproduced below); compute I_a/P

O Read the unit peak discharge (q_u) from Exhibit 4-III in Chapter 4 of TR-55 (reproduced below) for appropriate t_c

Product Flow Rates

CASCADE								
Madal	Treatment Rate	Sediment Capacity ¹						
WOUEI	(cfs)	(CF)						
CS-4	2.00	19						
CS-5	3.50	29						
CS-6	5.60	42						
CS-8	12.00	75						
CS-10	18.00	118						

Treatment Rate²

(cfs)

1.00

1.40

1.40

1.40

2.20

2.20

3.20

3.20

3.90

5.00

5.70

6.50

7.50

9.50

VORTECHS		
Madal	Treatment Rate	Sediment Capacity ³
Model	(cfs)	(CF)
1000	1.60	16
2000	2.80	32
3000	4.50	49
4000	6.00	65
5000	8.50	86
7000	11.00	108
9000	14.00	130
11000	17.5	151
16000	25	192

STORMCEPTOR STC

Model	Treatment Rate (cfs)	Sediment Capacity ¹ (CF)
STC 450i	0.40	46
STC 900	0.89	89
STC 2400	1.58	205
STC 4800	2.47	543
STC 7200	3.56	839
STC 11000	4.94	1086
STC 16000	7.12	1677

1 Additional sediment storage capacity available – Check with your local representative for information.

2 Treatment Capacity is based on laboratory testing using OK-110 (average D50 particle size of approximately 100 microns) and a 2400 micron screen.

3 Maintenance recommended when sediment depth has accumulated to within 12-18 inches of the dry weather water surface elevation.

Sediment Capacity¹

(CF)

14

25

39

57

39

57

39

57

57

57

57

57

151

151

CDS

Model

1515-3

2015-4

2015-5

2015-6

2020-5

2020-6

2025-5

2025-6

3020-6

3025-6

3030-6

3035-6

4030-8

4040-8

STORMWATER SOLUTIONS

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

Get social with us:

CASCADE SEPAR

THE STANDARD CS-5 CONFIGURATION IS SHOWN. ALTERNATE CONFIGU MAY BE COMBINED TO SUIT SITE REQUIREMENTS.
CONFIGURATION DESCRIPTION
GRATED INLET ONLY (NO INLET PIPE)
GRATED INLET WITH INLET PIPE OR PIPES
CURB INLET ONLY (NO INLET PIPE)
CURB INLET WITH INLET PIPE OR PIPES

FRAME AND COVER (DIAMETER VARIES) NOT TO SCALE

GENERAL NOTES

- CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE. 1.
- 2. SOLUTIONS LLC REPRESENTATIVE. www.ContechES.com
- 3. THIS DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- 4 CASTINGS SHALL MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.
- 5. METHOD.
- 6. ALTERNATE UNITS ARE SHOWN IN MILLIMETERS [mm].

INSTALLATION NOTES

- Α. SPECIFIED BY ENGINEER OF RECORD.
- В. MANHOLE STRUCTURE.
- C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS AND ASSEMBLE STRUCTURE. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT INLET AND OUTLET PIPE(S). MATCH PIPE INVERTS WITH ELEVATIONS SHOWN. ALL PIPE D. CENTERLINES TO MATCH PIPE OPENING CENTERLINES.
- E. SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

JRATIONS ARE AVAILABLE AND ARE LISTED BELOW. SOME CONFIGURATIONS

SITE SPECIFIC						
DATA REQUIREMENTS						
STRUCTURE ID						
WATER QUALITY FLOW RATE (cfs [L/s])						

PEAK FLOW RATE (cfs			
RETURN PERIOD OF F			
RIM ELEVATION			
		-	
PIPE DATA:	INVERT	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2			
OUTLET PIPE			
NOTES / SPECIAL REC	QUIREMENTS:		

FOR SITE SPECIFIC DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED

CASCADE SEPARATOR WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN

CASCADE SEPARATOR STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' - 2' [610], AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION.

CASCADE SEPARATOR STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C478 AND AASHTO LOAD FACTOR DESIGN

ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE

CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CASCADE SEPARATOR

CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS

CS-5 CASCADE SEPARATOR STANDARD DETAIL

Cascade Separator[™] Inspection and Maintenance Guide

Maintenance

The Cascade Separator[™] system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects sediment and debris will depend upon on-site activities and site pollutant characteristics. For example, unstable soils or heavy winter sanding will cause the sediment storage sump to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (i.e. spring and fall). However, more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment wash-down areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

A visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet chamber, flumes or outlet channel. The inspection should also quantify the accumulation of hydrocarbons, trash and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided in this Inspection and Maintenance Guide.

Access to the Cascade Separator unit is typically achieved through one manhole access cover. The opening allows for inspection and cleanout of the center chamber (cylinder) and sediment storage sump, as well as inspection of the inlet chamber and slanted skirt. For large units, multiple manhole covers allow access to the chambers and sump.

The Cascade Separator system should be cleaned before the level of sediment in the sump reaches the maximum sediment depth and/or when an appreciable level of hydrocarbons and trash has accumulated. If sorbent material is used, it must be replaced when significant discoloration has occurred. Performance may be impacted when maximum sediment storage capacity is exceeded. Contech recommends maintaining the system when sediment level reaches 50% of maximum storage volume. The level of sediment is easily determined by measuring the distance from the system outlet invert (standing water level) to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Finer, silty particles at the top of the pile typically offer less resistance to the end of the rod than larger particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the chart in this document to determine if the height of the sediment pile off the bottom of the sump floor exceeds 50% of the maximum sediment storage.

Cleaning

Cleaning of a Cascade Separator system should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole cover and insert the vacuum tube down through the center chamber and into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The areas outside the center chamber and the slanted skirt should also be washed off if pollutant build-up exists in these areas.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. Then the system should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and to ensure proper safety precautions. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the Cascade Separator system must be done in accordance with local regulations. In many locations, disposal of evacuated sediments may be handled in the same manner as disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal. If any components are damaged, replacement parts can be ordered from the manufacturer.

Cascade Separator[™] Maintenance Indicators and Sediment Storage Capacities

Model	Diam	eter	Distance from Wat Sedim	ter Surface to Top of ent Pile	Sediment Sto	rage Capacity
Number	ft	m	ft	ft m		m³
CS-4	4	1.2	1.5 0.5		0.7	0.5
CS-5	5	1.3	1.5	0.5	1.1	0.8
CS-6	6	1.8	1.5	0.5	1.6	1.2
CS-8	8	2.4	1.5	0.5	2.8	2.1
CS-10	10	3.0	1.5	0.5	4.4	3.3
CS-12	12	3.6	1.5	0.5	6.3	4.8

Note: The information in the chart is for standard units. Units may have been designed with non-standard sediment storage depth.

A Cascade Separator unit can be easily cleaned in less than 30 minutes.

A vacuum truck excavates pollutants from the systems.

	Cascade Se	eparator™ Insp	ection & Mainte	enance Log	
Cascade Model:			Location:		
Date	Depth Below Invert to Top of Sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

1. The depth to sediment is determined by taking a measurement from the manhole outlet invert (standing water level) to the top of the sediment pile. Once this measurement is recorded, it should be compared to the chart in the maintenance guide to determine if the height of the sediment pile off the bottom of the sump floor exceeds 50% of the maximum sediment storage. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

SUPPORT

• Drawings and specifications are available at www.ContechES.com.

• Site-specific design support is available from our engineers.

©2019 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, and earth stabilization products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

Appendix F Hydrologic Analysis-Imput Computations

Deming Street Multi-Family Development

240 Deming Street, South Windsor, Connecticut

Drainage Report

Prepared for: Metro Realty 6 Executive Drive, Suite 100 Farmington, CT 06032

SLR Project No.: 141.13571.00069

June 28, 2023

Curve Number Calculations							
Project: Location:	Metro South Windsor 240 Deming Street South Windsor, CT	_		-			
By:	LCD Date: 6/2/23 C	hecked:	MCB		Date:	6/6/23	
Circle one:	Present Developed Wat	ershed:	EXWS	5-10			
Soil Name	Cover Description	C	N Value	ə ^{1.}	Area	Product	
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	OT CN x Area	
N/A	Existing Building	98			0.15	14.67	
N/A	Paved/Impervious	98			0.13	12.70	
B Soil	Woods - Good Condition	55			0.28	15.44	
B Soil	Open Space - Good Condition	61			2.30	140.26	
C Soil	Woods - Good Condition	70			0.39	27.12	
C Soil	Open Space - Good Condition	74			2.40	177.66	
L		<u> </u>	Tota	als =	5.65	387.84	
				(0.00882	sq mı)	
CN (\	weighted) = $\frac{\text{total product}}{\text{total area}} = \frac{38}{5}$	7.84 .65	Use	e CN =	69]	

₩SLR

	Curve Number Ca	alcula	ation	S		
Project: Location:	Metro South Windsor 240 Deming Street	_				
Bv:	LCD Date: 6/2/23 Cł	_ necked:	MCB		Date:	6/6/23
Circle one:	Present Developed Wat	ershed:	EXWS	-20		
	·					
Soil Name and	Cover Description	CI	N Value	e ^{1.}	Area	Product of
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	CN x Area
N/A	Existing Building	98			0.07	6.77
N/A	Paved/Impervious	98			0.46	45.53
B Soil	Open Space - Good Condition	61			0.72	44.16
C Soil	Open Space - Good Condition	74			0.69	50.86
			Tota	als =	1.94	147.32
				(0.00304	sq mi)
CN (weighted) = $\frac{\text{total product}}{\text{total area}} = \frac{14}{1}$	7.32 .94	• Use	e CN =	76]

	Curve Number Ca	alcula	ation	S		
Proiect:	Metro South Windsor					
Location:	240 Deming Street	-				
	South Windsor, CT			•		
By:	LCD Date: 6/2/23 Ch	necked:	MCB		Date:	6/6/23
Circle one:	Present Developed Wate	ershed:	EXWS	-30		
Soil Name	Cover Description	C	N Value	e ^{1.}	Area	Product
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	CN x Area
B Soil	Open Space - Good Condition	61			0.27	16.67
C Soil	Open Space - Good Condition	74			0.0004	0.03
			Tot		0.27	16.70
			TOL	(0.27	sq mi)
CN (\	weighted) = $\frac{\text{total product}}{\text{total area}} = 0$	6.70 .27	Use	e CN =	61]

Curve Number Calculations						
Proiect:	Metro South Windsor					
Location:	240 Deming Street	-				
	South Windsor, CT	_		•		
By:	MCB Date: <u>6/28/23</u> Ch	necked:			Date:	
Circle one:	Present <u>Developed</u> Wate	ershed:	PRWS	6-10		
Soil Name	Cover Description	CI	N Valu	e ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	of CN x Area
B Soil	Woods - Good Condition	55			0.08	4.42
B Soil	Open Space - Good Condition	61			0.06	3.40
C Soil	Woods - Good Condition	70			0.05	3.78
C Soil	Open Space - Good Condition	74			1.13	83.89
N/A	Paved/Impervious	98			0.04	4.25
			Tota	als =	1.37	99.73
				(0.00214	sq mi)
CN ([,]	weighted) = $\frac{\text{total product}}{\text{total area}} = \frac{99}{1}$.73 .37	Use	e CN =	73	

₩SLR

Project: Metro South Windsor, CT South Windsor, CT Date: By: MCB Date: Circle one: Present Developed Watershed: PRWS-11 Soil Name and Hydrologic Cover Description percent impervious; unconnected/connected impervious; area ratio) CN Value ^{1.} Area Produc of CN x Area of CN x area area ratio) B Soil Woods - Good Condition 55 0.06 3.32 B Soil Open Space - Good Condition 61 0.09 5.71 C Soil Woods - Good Condition 74 0.777 56.87 N/A Paved/Impervious 98 1.49 145.85 N/A Paved/Impervious 98 0.86 84.52 N/A Proposed Building 98 0.86 84.52 N/A Proposed Building 1 1 1 1 N/A Proposed Building 1 1 1 1 N/A Proposed Building 1 1 1 1 N/A Proposed Building 1 1 1 1 1 <tr< th=""><th></th><th>Curve Number Ca</th><th>alcula</th><th>ation</th><th>S</th><th></th><th></th></tr<>		Curve Number Ca	alcula	ation	S		
Soil Name and Hydrologic Group Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious; area ratio) CN Value 1. R R g g f f Area S g g f Produc of CN x Are S g f B Soil Woods - Good Condition 55 0.06 3.32 B Soil Open Space - Good Condition 61 0.09 5.71 C Soil Woods - Good Condition 70 0.000 0.10 C Soil Open Space - Good Condition 74 0.77 56.87 N/A Paved/Impervious 98 1.49 145.85 N/A Proposed Building 98 0.86 84.52 Image: Complex Com	Project: Location: By: Circle one:	Metro South Windsor 240 Deming Street South Windsor, CT MCB Date: 6/28/23 Present Developed	necked:	PRWS	- S-11	Date:	
B Soil Woods - Good Condition 55 0.06 3.32 B Soil Open Space - Good Condition 61 0.09 5.71 C Soil Woods - Good Condition 70 0.00 0.10 C Soil Open Space - Good Condition 74 0.77 56.87 N/A Paved/Impervious 98 1.49 145.85 N/A Proposed Building 98 0.86 84.52 Image: Solid Condition N/A Paved/Impervious 98 1.49 145.85 N/A Proposed Building 98 0.86 84.52 Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition Image: Solid Condition	Soil Name and Hydrologic Group (appendix A)	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Area Acres Sq. Ft. %	Product of CN x Area
B Soil Open Space - Good Condition 61 0.09 5.71 C Soil Woods - Good Condition 70 0.00 0.10 C Soil Open Space - Good Condition 74 0.77 56.87 N/A Paved/Impervious 98 1.49 145.85 N/A Proposed Building 98 0.86 84.52 Image: Space - Good Condition 1 Image: Space - Good Condition 1 N/A Paved/Impervious 98 0.86 84.52 Image: Space - Good Condition 1 Image: Space - Good Condition 1 Image: Space - Good Condition 1 N/A Proposed Building 98 0.86 84.52 Image: Space - Good Condition 1 1 Image: Space - Good Condition 1 </td <td>B Soil</td> <td>Woods - Good Condition</td> <td>55</td> <td></td> <td></td> <td>0.06</td> <td>3.32</td>	B Soil	Woods - Good Condition	55			0.06	3.32
C Soil Woods - Good Condition 70 0.00 0.10 C Soil Open Space - Good Condition 74 0.77 56.87 N/A Paved/Impervious 98 1.49 145.85 N/A Proposed Building 98 0.86 84.52 Image: Contract of the system of	B Soil	Open Space - Good Condition	61			0.09	5.71
C Soil Open Space - Good Condition 74 0.77 56.87 N/A Paved/Impervious 98 1.49 145.85 N/A Proposed Building 98 0.86 84.52 Image: Strain St	C Soil	Woods - Good Condition	70			0.00	0.10
N/A Paved/Impervious 98 1.49 145.85 N/A Proposed Building 98 0.86 84.52 Image: Strain Strai	C Soil	Open Space - Good Condition	74			0.77	56.87
N/A Proposed Building 98 0.86 84.52	N/A	Paved/Impervious	98			1.49	145.85
Totals = 3.27 296.36	N/A	Proposed Building	98			0.86	84.52
Totals = 3.27 296.36							
(0.00512 sq mi) $CN \text{ (weighted)} = \frac{\text{total product}}{100000000000000000000000000000000000$		weighted) =total product =29	6.36	Tota	als = (e CN =	3.27 0.00512 91	296.36 sq mi)

₩SLR

Curve Number Calculations						
Project:	Metro South Windsor					
Location:	240 Deming Street	_		_		
	South Windsor, CT	_				
By:	MCB Date: 6/28/23 Cr	necked:			Date:	
Circle one:	Present <u>Developed</u> Wate	ershed:	PRWS	5-20		
Soil Name	Cover Description	CI	N Value	e ^{1.}	Area	Product
and Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	of CN x Area
B Soil	Woods - Good Condition	55			0.06	3.47
B Soil	Open Space - Good Condition	61			2.63	160.31
C Soil	Open Space - Good Condition	74			0.02	1.21
N/A	Paved/Impervious	98			0.11	10.50
N/A	Existing Building	98			0.13	13.03
			Tota	als =	2.95	188.52
				(0.00461	sq mi)
CN (\	weighted) = $\frac{\text{total product}}{\text{total area}} = \frac{183}{2}$	8.52 .95	Use	e CN =	64	

	Curve Number Ca	alcula	ation	S		
Project: Location:	Metro South Windsor 240 Deming Street	-				
By:	South Windsor, CT	_ bockod:	MCB		Data:	6/6/22
Circle one:	Present Developed Wat	ershed [.]	PRWS	3-30	Date.	0/0/23
	The second <u>Derenoped</u> that	oronou.				
Soil Name and	Cover Description	C	N Value	e ^{1.}	Area	Product of
Hydrologic Group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Figure 2-3	Figure 2-4	Acres Sq. Ft. %	CN x Area
B Soil	Open Space - Good Condition	61			0.27	16.67
C Soil	Open Space - Good Condition	74			0.0004	0.03
L	1	1	Tota	als =	0.27	16.70
				(0.00043	sq mi)
CN (\	weighted) = $\frac{\text{total product}}{\text{total area}} = \frac{16}{0}$.70 .27	• Use	e CN =	61]

POINT PRECIPITATION FREQUENCY ESTIMATES

Elevation: 137 ft** source: ESRI Maps ** source: USGS

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_& aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹											
Duration	Average recurrence interval (years)										
	1	2	5	10	25	50	100	200	500	1000	
5-min	0.334 (0.259-0.432)	0.406 (0.314-0.525)	0.523 (0.403-0.678)	0.620 (0.475-0.809)	0.753 (0.559-1.03)	0.853 (0.622-1.19)	0.959 (0.680-1.39)	1.08 (0.724-1.60)	1.25 (0.808-1.92)	1.39 (0.879-2.17)	
10-min	0.474 (0.366-0.612)	0.575 (0.444-0.744)	0.740 (0.570-0.960)	0.878 (0.673-1.15)	1.07 (0.793-1.46)	1.21 (0.880-1.69)	1.36 (0.963-1.97)	1.53 (1.03-2.26)	1.77 (1.14-2.71)	1.97 (1.24-3.08)	
15-min	0.557 (0.431-0.720)	0.676 (0.523-0.875)	0.871 (0.671-1.13)	1.03 (0.791-1.35)	1.26 (0.932-1.71)	1.42 (1.04-1.98)	1.60 (1.13-2.32)	1.80 (1.21-2.66)	2.08 (1.35-3.19)	2.32 (1.46-3.62)	
30-min	0.749 (0.579-0.967)	0.911 (0.704-1.18)	1.18 (0.906-1.53)	1.40 (1.07-1.82)	1.70 (1.26-2.32)	1.92 (1.40-2.69)	2.16 (1.53-3.13)	2.43 (1.63-3.60)	2.82 (1.82-4.32)	3.14 (1.98-4.91)	
60-min	0.941 (0.728-1.22)	1.14 (0.885-1.48)	1.48 (1.14-1.92)	1.76 (1.35-2.29)	2.14 (1.59-2.92)	2.43 (1.77-3.39)	2.73 (1.93-3.95)	3.07 (2.06-4.54)	3.56 (2.30-5.46)	3.96 (2.50-6.19)	
2-hr	1.22 (0.945-1.56)	1.47 (1.14-1.89)	1.89 (1.46-2.44)	2.24 (1.72-2.90)	2.71 (2.03-3.69)	3.07 (2.25-4.28)	3.45 (2.47-5.00)	3.90 (2.63-5.74)	4.58 (2.97-6.98)	5.15 (3.27-8.01)	
3-hr	1.40 (1.09-1.79)	1.69 (1.32-2.17)	2.17 (1.69-2.79)	2.57 (1.98-3.32)	3.12 (2.34-4.23)	3.52 (2.59-4.90)	3.96 (2.85-5.74)	4.49 (3.03-6.59)	5.30 (3.45-8.06)	6.00 (3.81-9.29)	
6-hr	1.76 (1.38-2.24)	2.13 (1.67-2.72)	2.74 (2.14-3.50)	3.25 (2.52-4.18)	3.94 (2.98-5.34)	4.46 (3.31-6.18)	5.02 (3.64-7.27)	5.72 (3.87-8.34)	6.80 (4.43-10.3)	7.73 (4.93-11.9)	
12-hr	2.15 (1.69-2.72)	2.63 (2.07-3.33)	3.41 (2.68-4.34)	4.07 (3.17-5.20)	4.96 (3.77-6.68)	5.62 (4.19-7.76)	6.35 (4.63-9.14)	7.25 (4.92-10.5)	8.65 (5.66-13.0)	9.87 (6.31-15.1)	
24-hr	2.51 (1.99-3.16)	3.11 (2.46-3.93)	4.10 (3.24-5.19)	4.92 (3.86-6.27)	6.05 (4.62-8.12)	6.88 (5.16-9.46)	7.79 (5.72-11.2)	8.95 (6.10-12.9)	10.8 (7.08-16.1)	12.4 (7.96-18.8)	
2-day	2.83 (2.26-3.55)	3.56 (2.84-4.47)	4.76 (3.77-5.99)	5.75 (4.54-7.28)	7.12 (5.47-9.52)	8.11 (6.13-11.1)	9.22 (6.85-13.3)	10.7 (7.31-15.3)	13.1 (8.61-19.4)	15.2 (9.80-23.0)	
3-day	3.08 (2.46-3.85)	3.88 (3.10-4.86)	5.20 (4.13-6.52)	6.28 (4.97-7.93)	7.78 (6.00-10.4)	8.87 (6.73-12.2)	10.1 (7.52-14.5)	11.7 (8.03-16.7)	14.4 (9.49-21.3)	16.8 (10.8-25.2)	
4-day	3.31 (2.65-4.12)	4.16 (3.33-5.19)	5.56 (4.43-6.96)	6.72 (5.32-8.45)	8.31 (6.42-11.1)	9.47 (7.20-12.9)	10.8 (8.04-15.5)	12.5 (8.58-17.8)	15.4 (10.1-22.6)	17.9 (11.6-26.8)	
7-day	3.92 (3.16-4.86)	4.88 (3.92-6.06)	6.45 (5.16-8.04)	7.75 (6.17-9.71)	9.54 (7.40-12.6)	10.8 (8.27-14.7)	12.3 (9.19-17.5)	14.2 (9.79-20.1)	17.3 (11.5-25.4)	20.1 (13.0-29.9)	
10-day	4.54 (3.67-5.62)	5.56 (4.48-6.88)	7.22 (5.80-8.97)	8.59 (6.86-10.7)	10.5 (8.14-13.8)	11.9 (9.05-16.0)	13.4 (10.0-18.9)	15.4 (10.6-21.7)	18.5 (12.3-27.0)	21.3 (13.8-31.7)	
20-day	6.53 (5.30-8.04)	7.61 (6.17-9.37)	9.37 (7.57-11.6)	10.8 (8.70-13.5)	12.8 (9.99-16.7)	14.3 (10.9-19.0)	15.9 (11.8-22.0)	17.9 (12.4-25.0)	20.8 (13.8-30.0)	23.2 (15.1-34.2)	
30-day	8.24 (6.71-10.1)	9.34 (7.60-11.5)	11.1 (9.03-13.7)	12.6 (10.2-15.7)	14.7 (11.4-18.9)	16.3 (12.4-21.3)	17.9 (13.2-24.3)	19.7 (13.7-27.4)	22.3 (14.9-32.0)	24.4 (15.9-35.8)	
45-day	10.4 (8.48-12.7)	11.5 (9.40-14.1)	13.4 (10.9-16.4)	14.9 (12.1-18.4)	17.0 (13.3-21.8)	18.7 (14.2-24.3)	20.3 (14.9-27.2)	22.0 (15.4-30.4)	24.2 (16.2-34.7)	25.9 (16.9-37.8)	
60-day	12.2 (9.98-14.9)	13.4 (10.9-16.3)	15.3 (12.4-18.7)	16.9 (13.7-20.8)	19.1 (14.9-24.2)	20.8 (15.8-26.8)	22.4 (16.4-29.8)	24.0 (16.8-33.1)	25.9 (17.4-37.0)	27.3 (17.8-39.8)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

Large scale terrain

Large scale map

Large scale aerial

Appendix G Hydrologic Analysis-Computer Model Results

Deming Street Multi-Family Development

240 Deming Street, South Windsor, Connecticut

Drainage Report

Prepared for: Metro Realty 6 Executive Drive, Suite 100 Farmington, CT 06032

SLR Project No.: 141.13571.00069

June 28, 2023

Hydrographs Peak Flowrate Summary (cfs) Existing vs. Proposed

Storm Evant	2yr		10yr		25yr		50yr		100yr	
Storm Event	Exist	Prop								
Point of Analysis A	8.8	7.8	15.4	11.8	20.2	17.1	23.9	21.1	28.0	25.3
DET 110 W.S. Elev. (ft.) Top of Chamber Elev. = 130.1	-	127.7	-	129.1	-	129.5	-	129.7	-	129.9
Point of Analysis B	2.0	1.0	4.8	3.8	6.7	6.0	8.1	7.7	9.6	9.6
Point of Analysis C	0.0	0.0	0.3	0.3	0.5	0.5	0.7	0.7	0.9	0.9

Study Area							
Α							

В

С

Description

Western Property Boundary

On-Site Storm Drainage System

Storm Drainage System in Deming Street

Summary for Subcatchment 1S: EXWS-10

Runoff = 3.36 cfs @ 12.20 hrs, Volume= 0.308 af, Depth> 0.65" Routed to Link 6L : EX / A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.11"

Summary for Subcatchment 2S: EXWS-20 / B

Runoff = 2.04 cfs @ 12.16 hrs, Volume= 0.161 af, Depth> 1.00"

Area	(ac)	CN	Desc	criptio	on											
* 1.	940	76														
1.	940		100.	00%	Pervi	ous Ai	rea									
Tc (min)	Leng (fee	th S et)	Slope (ft/ft)	Velo (ft/	ocity sec)	Capa (acity (cfs)	Des	cripti	ion						
10.3								Dire	ect E	ntry,						
					Sub	catch	nmei	nt 29	S: E	xws	-20 /	В				
						Ну	drogra	aph								
						2	<mark>.04 c</mark>	fs								Runoff
2-₹	1											Тур	e II	24-	hr	
-					i i	į	ľ			2-Ye	ear F	Rain	fall	=3.1	1"	
						i i			F	ในท	off 4	\rea	=1 9	940	ac	
									Ruu	hoff		um	_= ∩	161	af	
(cfs)							H		IXUI	Ru	nof	f De	pth:	>1.0	0"	
MOI 1	/	 	+ 	- 	- 	+-		+				Тс	=10	.3 m	in	
" 'T													(76	
1						i i								51 1 -	10	
-						i	H					1				
-																
-											\overline{m}	1111				
0				////	////		· · · ·	, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,		· · · · · ·		/////		
5	6	7	8	9	10	11 .	12 Time (I	13 h ours)	14	15	16	17	18	19	20	

Summary for Subcatchment 3S: EXWS-30 / C

Runoff = 0.07 cfs @ 12.21 hrs, Volume= 0.008 af, Depth> 0.35"

	Area ((ac) CN	Des	cription				
*	0.2	270 6 ⁻	1					
	0.2	270	100.	00% Pervi	ous Area			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	9.6					Direct Entry	у,	
				Sub	catchme	nt 3S: EXW	/S-30 / C	
	0.07	+- +-	 					Runoff
	0.065		 				Type III 24-hr	
	0.06 0.055		 			2-)	Year Rainfall=3.11"	
		1 4 + -		+ $ +$ $ -$			nott Aroa=() 97() ac -	

Summary for Subcatchment 7S: PRWS-10

Runoff = 1.36 cfs @ 12.10 hrs, Volume= 0.096 af, Depth> 0.84" Routed to Link 12L : PR / A

Summary for Subcatchment 8S: PRWS-11

Runoff = 7.06 cfs @ 12.14 hrs, Volume= 0.557 af, Depth> 2.04" Routed to Pond 11P : DET 110

A	rea	(ac)	CN	Dese	cription									
*	3.2	270	91											
	3.	270		100.	00% Pervi	ous Area								
(m	Tc in)	Leng (fe	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Dese	criptic	'n					
10).2						Dire	ct En	try,					
					Su	bcatchm	ent 8	S: P	RW	S-11				
						Hydrogra	aph							
	ſ	1				7.06 c	fs							Runoff
	7-		+ 					- 	+ 		Тур	e III	24-h	nr
	6		$\frac{1}{1}$			·		- 2	-Ye	ar F	Rain	fall	=3.11	_11
	-	 						R	uno	off A	rea	=3.2	270 a	C
_	5-		- - - -					Run	off	Vol	ume)=0 .	557 a	af
/ (cfs)	4-		$\begin{array}{c} \bot \\ I \\ I \end{array} = \begin{array}{c} - \\ - \\ - \end{array}$			·		_ 	Ru	noff	De	pth	>2.04	L98
Flow			 +				+ -	 -	 +		Tc	=10	.2 mi	n
	3-*´											¢	CN=9	1
	2-		 	-i + ·			- + -	- 	+ 		 	· + 		
	-		$\frac{1}{1}$	$-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$		·		-	$ \frac{1}{1}$		<mark> </mark>	 	 	
	1-* -											 		
	0							, 	15	16	<u>- , </u>	10	10	
	5	0	1	U	<i>3</i> 10	Time (hours)	14	15	10	17	10	13	20

Summary for Subcatchment 9S: PRWS-30 / C

Runoff = 0.07 cfs @ 12.21 hrs, Volume= 0.008 af, Depth> 0.35"

0.035

0.03

0.025 0.02 0.015 0.01 0.005

6

5

ż

8

ģ

10

11

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.11"

Area	a (ac)	CN	Des	cription					
*).270	61							
).270		100.	00% Pervi	ous Area				
To (min)	Leng (fe	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Des	cription		
9.6						Dire	ct Entry,		
				Sub	catchme	nt 9S	: PRWS-30 / C		
	1	1			Hydrogra	aph			
0.		+	 		0.07	cfs		📘 Runoff	
0.0	65 -	<u> </u> +	'				Type III 24-h	۱r	
0.)6	<u> </u>					2-Year Rainfall=3.11		
0.0	55	 +					- Runoff Area=0.270 a		
0.)5	 			· · ·				
0.0	15	 +	 				Runoff Volume=0.008 a	at	
.0 (cts)4] /				· · · · · · · · · · · · · · · · · · ·		Runoff Depth>0.35	5"	

12 13 Time (hours) 14

15

Tc=9.6 min

17

18

16

CN=61

19

20

Summary for Subcatchment 13S: PRWS-20 / B

Runoff = 0.99 cfs @ 12.25 hrs, Volume= 0.112 af, Depth> 0.46"

Area	(ac) C	N Dese	cription		
* 2.	950 6	4			
2.	950	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.9					Direct Entry,
			Subc	atchmen	nt 13S: PRWS-20 / B
				Hydrogra	raph
Í				0,99 (
Flow (cfs)					Type III 24-hr 2-Year Rainfall=3.11" Runoff Area=2.950 ac Runoff Volume=0.112 af Runoff Depth>0.46" Tc=13.9 min CN=64
0-	6	7 8	9 10	11 12 Time (1	13 14 15 16 17 18 19 20 (hours)

MR-SW-Model01-Retain-itType III 24-hr2-Year Rainfall=3.11"Prepared by SLR International CorporationPrinted 6/27/2023HydroCAD® 10.20-3cs/n 08105© 2023 HydroCAD Software Solutions LLCPage 9

Summary for Reach 5R: 18" PIPE

Inflow = 5.46 cfs @ 5.00 hrs, Volume= Outflow = 5.73 cfs @ 6.94 hrs, Volume= Routed to Link 6L : EX / A 6.791 af, Incl. 5.46 cfs Base Flow 6.776 af, Atten= 0%, Lag= 116.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.47 fps, Avg. Travel Time= 0.3 min

Peak Storage= 106 cf @ 5.05 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 5.42 cfs

18.0" Round Pipe n= 0.013 Length= 60.0' Slope= 0.0027 '/' Inlet Invert= 134.70', Outlet Invert= 134.54'

Reach 5R: 18" PIPE

MR-SW-Model01-Retain-itType III 24-hr2-Year Rainfall=3.11"Prepared by SLR International CorporationPrinted 6/27/2023HydroCAD® 10.20-3cs/n 08105© 2023 HydroCAD Software Solutions LLCPage 10

Summary for Reach 10R: 18" PIPE

Inflow = 5.46 cfs @ 5.00 hrs, Volume= Outflow = 5.73 cfs @ 6.94 hrs, Volume= Routed to Link 12L : PR / A 6.791 af, Incl. 5.46 cfs Base Flow 6.776 af, Atten= 0%, Lag= 116.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.47 fps, Avg. Travel Time= 0.3 min

Peak Storage= 106 cf @ 5.05 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 5.42 cfs

18.0" Round Pipe n= 0.013 Length= 60.0' Slope= 0.0027 '/' Inlet Invert= 134.70', Outlet Invert= 134.54'

Reach 10R: 18" PIPE

MR-SW-Model01-Retain-it	Type III 24-hr	2-Year Rain	nfall=3.11"
Prepared by SLR International Corporation		Printed	6/27/2023
HydroCAD® 10.20-3c_s/n 08105_© 2023 HydroCAD Software Solut	tions LLC		Page 11

Summary for Pond 11P: DET 110

Inflow A Inflow Outflow Primary Route	rea = = = = ed to Link 1	3.270 ac, 0.00 7.06 cfs @ 12. 1.93 cfs @ 12. 1.93 cfs @ 12. 2L : PR / A	0% Impervious, Inflow Depth > 2.04" for 2-Year event .14 hrs, Volume= 0.557 af .56 hrs, Volume= 0.313 af, Atten= 73%, Lag= 24.7 min .56 hrs, Volume= 0.313 af
Routing Peak Ele	by Stor-Ind ev= 127.66'	method, Time S @ 12.56 hrs S	Span= 5.00-20.00 hrs, dt= 0.05 hrs Surf.Area= 0.134 ac Storage= 0.306 af
Plug-Flo Center-o	ow detentior of-Mass det	n time= 168.3 mi . time= 90.9 min	in calculated for 0.313 af (56% of inflow) (866.0 - 775.1)
Volume	Inver	t Avail.Storag	ge Storage Description
#1A	125.10	0.000	af 56.00'W x 104.00'L x 5.67'H Field A
#2A	125.10	0.599	0.758 af Overall - 0.758 af Embedded = 0.000 af X 40.0% Volds af retain_it retain_it 5.0' x 91 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 7 Rows adjusted for 415.6 cf perimeter wall
		0.599	af Total Available Storage
Stora	age Group A	A created with C	hamber Wizard
Device	Routing	Invert	Outlet Devices
#1	Primary	123.00'	18.0" Round Culvert L= 50.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 123.00' / 122.00' S= 0.0200 '/' Cc= 0.900

			Inlet / Outlet Invert= 123.00' / 122.00' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 1.77 sf
#2	Device 1	127.00'	8.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
#3	Device 1	129.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=1.92 cfs @ 12.56 hrs HW=127.66' (Free Discharge) 1=Culvert (Passes 1.92 cfs of 13.28 cfs potential flow) 2=Orifice/Grate (Orifice Controls 1.92 cfs @ 2.76 fps) 3=Sharp-Crested Rectangular Weir (Controls 0.00 cfc)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

MR-SW-Model01-Retain-it

7

6

5

8

9

10

11

12

Time (hours)

13

Hydrograph Inflow
Primary 7.06 cfs Inflow Area=3.270 ac 7-Peak Elev=127.66' 6-Storage=0.306 af 5 Flow (cfs) 4 3-1.93 cfs 2-1-0_

15

14

16

17

18

20

19

Pond 11P: DET 110

Summary for Link 6L: EX / A

Inflow A	Area =	5.650 ac,	0.00% Impervious,	Inflow Depth > 15.04"	for 2-Year event
Inflow	=	8.82 cfs @	12.20 hrs, Volume=	= 7.083 af	
Primary	y =	8.82 cfs @	12.20 hrs, Volume=	= 7.083 af, At	ten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 6L: EX / A

Summary for Link 12L: PR / A

Inflow A	Area =	4.640 ac,	0.00% Impervious,	Inflow Depth > 18.58"	for 2-Year event
Inflow	=	7.78 cfs @	12.47 hrs, Volume=	7.184 af	
Primary	y =	7.78 cfs @	12.47 hrs, Volume=	= 7.184 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 12L: PR / A

Summary for Subcatchment 1S: EXWS-10

Runoff = 9.90 cfs @ 12.18 hrs, Volume= 0.820 af, Depth> 1.74" Routed to Link 6L : EX / A

Summary for Subcatchment 2S: EXWS-20 / B

Runoff = 4.80 cfs @ 12.15 hrs, Volume= 0.370 af, Depth> 2.29"

	Area	(ac)	CN	l Des	cription									
*	1.	940	76	6										
	1.	940		100	.00% Perv	vious Area								
(n	Tc nin)	Leng (fe	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs	y De:)	scriptio	on					
1	0.3						Dir	ect Er	ntry,					
					Sul	bcatchm	ent 2	S: EX	ws-	20 / E	3			
						Hydro	graph							
	5-					4.80	<u>cfs</u>	·				 		Runoff
	4-*	,						10 R Run)-Ye uno loff	T ar Ra off Ar Volu	ype ainfa ea= me=	24 all=4. 1.940 0.37	I-hr 92") ac 0 af	
Flow (cfs)	3								Rur	noff	Dept Tc=′	th>2. 10.3 i	29" nin	
	2-*´	, 						· 				CN	=76	
	- 1-*´ -	,}												
	0-4	6		8	9 10	11 12 Time	13 (hours)	 14	15	16	17	, , , , , , , , , , , , , , , , , , , 	20	

Summary for Subcatchment 3S: EXWS-30 / C

Runoff = 0.33 cfs @ 12.15 hrs, Volume= 0.027 af, Depth> 1.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.92"

	Area	(ac)	CN	Desc	cription						
*	0.	270	61								
	0.	270		100.	00% Pervi	ous Area					
	Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	9.6	•		×			Direct Entry,				
	Subactobrant 2St EVWS 20 / C										

Subcatchment 3S: EXWS-30 / C

Summary for Subcatchment 7S: PRWS-10

Runoff = 3.47 cfs @ 12.10 hrs, Volume= 0.234 af, Depth> 2.05" Routed to Link 12L : PR / A

Summary for Subcatchment 8S: PRWS-11

Runoff = 12.34 cfs @ 12.14 hrs, Volume= 1.005 af, Depth> 3.69" Routed to Pond 11P : DET 110

Area	(ac)	CN	l Des	cription										
3	.270	91												
3	.270		100.	00% Perv	ious Area									
Tc (min)	Leno (fe	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Des	criptio	on						
10.2						Dire	ct Er	t ry ,						
				Su	ıbcatchm	nent 8	3S: F	RW	S-11					
					Hydrog	raph								
ſ	1	 +	 - +-	 +	 	 		 		 +	 	 +		Runo
13		 	+ -	 	12.34	<mark>cfs</mark>		י 		·+	 			
12-7		i 	i i 	<u>-</u> <u>-</u>		i 		 	i 	Тур	e III	24-	hr	
11-7			+-	+			10	-Ye	ar F	Rain	fall	=4.9	2"_	
10-7		 	+-	+			R	unc	off A	rea	=3.2	270	ac₋∣	
9-7	/		- <mark> </mark> -				Run	off	Vol	ume)=1.	005	af	
(cfs)	/	 	- L L - I I	 			L 	Ru	nof	[:] De	pth	>3.6	9"	
Nol-	/	 +	- + - 	+ 			- 	+ 	- 	Tc	- =10	.2 m	in	
1 0 1 5	/	 	+-	+ I I				 				CN=	91	
4	/	<u> </u>		<mark> </mark> <u> </u> 			L	 	- 	<u> </u> 				
3	/	+	- + - 	+ 				+ 	- 	+ 	 	+ 		
2	/	+	- + - 	+ 			⊢ 	+ 	- 	+ 	 	+		
1 1 1	1	 		mmm										
0				· · · · · · · · · · · · · · ·	11 12	12	14	15	16	17	18	10	20	
5	0	'	0	ə 10	Time ((hours)	14	10	10	17	10	19	20	

Summary for Subcatchment 9S: PRWS-30 / C

Runoff = 0.33 cfs @ 12.15 hrs, Volume= 0.027 af, Depth> 1.19"

	Area	(ac)	CN	Desc	cription							
*	0.	.270	61									
	0.	.270		100.	00% Pervi	ous Area						
	Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	9.6 Direct Entry,											
	Subcatchment 9S: PRWS-30 / C											

Summary for Subcatchment 13S: PRWS-20 / B

Runoff = 3.82 cfs @ 12.21 hrs, Volume= 0.341 af, Depth> 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.92"

	Area	(ac)	CN	Des	cription										
*	2.	950	64		-										
	2.	950		100	.00% Perv	ious Are	ea								
(r	Tc min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capao (c	city Do	escript	ion						
	13.9	•					D	irect E	ntry,						
					Sub	catchn	nent 1	3S: P	RWS	6-20	B				
						Hyd	rograph								
	4-	1	 				82 cfs	 	 + 	 - 			 		Runoff
	-		 				P		 		Тур	be III	24-	hr	
	1							1	0-Ye	ar F	Rain	fall	=4.9	2"	
	3-		+ 					F	Runc	off A	rea	=2.9	950	ac	
~			1					Ru	noff	Vol	umo	e=0.	341	af	
/ (cfs		, 	 	 +	 			 - +	Ru	noff	De	pth	>1.3	9"	
Flov	2-										Тс	=13	.9 m	in	
	-											C	CN=	64	
	1	,	 					, <u> </u>		·			·		
	'.		 												
	-		1								777				
	0							<u>, , , , , , , , , , , , , , , , ,</u>	· · · · <u>í · ·</u>		· · · · ·		· · · · · ·		I

Time (hours)

MR-SW-Model01-Retain-itType III 24-hr10-Year Rainfall=4.92"Prepared by SLR International CorporationPrinted 6/27/2023HydroCAD® 10.20-3cs/n 08105© 2023 HydroCAD Software Solutions LLCPage 22

Summary for Reach 5R: 18" PIPE

Inflow = 5.46 cfs @ 5.00 hrs, Volume= Outflow = 5.73 cfs @ 6.94 hrs, Volume= Routed to Link 6L : EX / A 6.791 af, Incl. 5.46 cfs Base Flow 6.776 af, Atten= 0%, Lag= 116.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.47 fps, Avg. Travel Time= 0.3 min

Peak Storage= 106 cf @ 5.05 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 5.42 cfs

18.0" Round Pipe n= 0.013 Length= 60.0' Slope= 0.0027 '/' Inlet Invert= 134.70', Outlet Invert= 134.54'

Reach 5R: 18" PIPE

MR-SW-Model01-Retain-itType III 24-hr10-Year Rainfall=4.92"Prepared by SLR International CorporationPrinted 6/27/2023HydroCAD® 10.20-3cs/n 08105© 2023 HydroCAD Software Solutions LLCPage 23

Summary for Reach 10R: 18" PIPE

Inflow = 5.46 cfs @ 5.00 hrs, Volume= Outflow = 5.73 cfs @ 6.94 hrs, Volume= Routed to Link 12L : PR / A 6.791 af, Incl. 5.46 cfs Base Flow 6.776 af, Atten= 0%, Lag= 116.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.47 fps, Avg. Travel Time= 0.3 min

Peak Storage= 106 cf @ 5.05 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 5.42 cfs

18.0" Round Pipe n= 0.013 Length= 60.0' Slope= 0.0027 '/' Inlet Invert= 134.70', Outlet Invert= 134.54'

Reach 10R: 18" PIPE

MR-SW-Model01-Retain-it	Type III 24-hr	10-Year Rain	nfall=4.92"
Prepared by SLR International Corporation		Printed	6/27/2023
HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software Sol	lutions LLC		Page 24

Summary for Pond 11P: DET 110

Inflow A	rea = 3.	270 ac, 0.00%	6 Impervious, Inflow Depth > 3.69" for 10-Year event
Inflow	= 12.3	34 cfs @ 12.14	4 hrs, Volume= 1.005 af
Outflow	= 4.7	74 cfs @ 12.45	5 hrs. Volume= 0.755 af. Atten= 62%. Lag= 18.5 min
Primary Route	= 4.1 ed to Link 12L	74 cfs @ 12.45 . : PR / A	5 hrs, Volume= 0.755 af
Routing	by Stor-Ind m	ethod, Time Sp	an= 5.00-20.00 hrs, dt= 0.05 hrs
Peak Ele	ev= 129.08° @) 12.45 nrs Sui	rr.Area = 0.134 ac Storage = 0.477 at
Plug-Flo Center-c	w detention ti of-Mass det. ti	me= 131.1 min me= 71.0 min (calculated for 0.755 af (75% of inflow) 832.5 - 761.5)
Volume	Invert	Avail.Storage	Storage Description
#1A	125.10'	0.000 af	56.00'W x 104.00'L x 5.67'H Field A
			0.758 af Overall - 0.758 af Embedded = 0.000 af x 40.0% Voids
#2A	125.10'	0.599 af	retain it retain it 5.0' x 91 Inside #1
			Inside= 84.0 "W x 60.0"H => 36.41 sf x 8.00 'L = 291.3 cf
			Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf
			7 Rows adjusted for 415.6 cf perimeter wall
		0.599 af	Total Available Storage
Stora	age Group A c	reated with Cha	amber Wizard
Device	Routing	Invert O	utlet Devices
#1	Primary	123 00' 18	3.0" Round Culvert

#1	Primary	123.00'	18.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 123.00' / 122.00' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 1.77 sf
#2	Device 1	127.00'	8.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
#3	Device 1	129.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=4.73 cfs @ 12.45 hrs HW=129.08' (Free Discharge) 1=Culvert (Passes 4.73 cfs of 15.51 cfs potential flow) 2=Orifice/Grate (Orifice Controls 4.44 cfs @ 6.36 fps) 3=Sharp-Crested Rectangular Weir (Weir Controls 0.29 cfs @ 0.92 fps)

MR-SW-Model01-Retain-it

Prepared by SLR International Corporation HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software Solutions LLC

Pond 11P: DET 110

Summary for Link 6L: EX / A

Inflow .	Area	a =	5.650 ac,	0.00% Impervious,	Inflow Depth > 16.1	13" for 10-Year event
Inflow		=	15.36 cfs @	12.18 hrs, Volume	e= 7.595 af	
Primar	у	=	15.36 cfs @	12.18 hrs, Volume	e= 7.595 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 6L: EX / A

Summary for Link 12L: PR / A

Inflow A	rea =	4.640 ac,	0.00% Impervious,	Inflow Depth > 20.08	3" for 10-Year event
Inflow	=	11.82 cfs @	12.12 hrs, Volume	= 7.765 af	
Primary	- =	11.82 cfs @	12.12 hrs, Volume	= 7.765 af, A	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 12L: PR / A

Summary for Subcatchment 1S: EXWS-10

Runoff = 14.73 cfs @ 12.17 hrs, Volume= 1.196 af, Depth> 2.54" Routed to Link 6L : EX / A

Summary for Subcatchment 2S: EXWS-20 / B

Runoff = 6.67 cfs @ 12.15 hrs, Volume= 0.516 af, Depth> 3.19"

A	rea	(ac)	CN	Des	cripti	on											
*	1.	940	76														
	1.	940		100	.00%	Perv	ous A	Area									
(m	Tc nin)	Leng (fee	gth et)	Slope (ft/ft)	Vel (ft	ocity /sec)	Сар	acity (cfs)	Des	scripti	ion						
1(0.3								Dire	ect E	ntry,						
						Sub	catc	hme	ent 2	S: EX	xws	-20 /	В				
							н	ydrog	raph								
	7		 		 - - 	 	; 	6.67 (ofs			 	 		 		Runoff
	-		 		 	 			¦	 	 	 	Тур	be III	24-	hr	
	6				 			ľ		2	5-Ye	ear F	Rair	fall	=6.0	5"	
	5-	.}	 		 	L	 			F	Runo	off A	\rea	i=1.9	940	ac-	
	-					1				Ru	noff	Vol	um	e=0.	516	af	
(cfs)	4-	1	 		; 						Ru	nof	f De	pth	>3.1	9"	
Flow	-		$\stackrel{ }{\downarrow}$		 		·				 	 	- Tc	=10	.3 m	in -	
	3						 							Ć	CN=	76	
	2	1			 	L I	لد ـــــ. ۱ ۱					 	 		!		
	-		i 	; _!	 	L	; 	- 0-					 				
	1-*					 	-										
									,				<u>////</u>		· · · · · ·		
	5	6	7	8	9	10	11	12 Time	13 (hours)	14	15	16	17	18	19	20	

Summary for Subcatchment 3S: EXWS-30 / C

Runoff = 0.54 cfs @ 12.15 hrs, Volume= 0.042 af, Depth> 1.86"

	Area	(ac) C	N Des	cription			
*	0.	270 6	1				
	0.	270	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	9.6					Direct Entry,	
				Sub	catchme Hydrogra	ent 3S: EXWS-30 / C raph	
	0.6				0.54 (cfs	Runoff

Summary for Subcatchment 7S: PRWS-10

Runoff = 4.93 cfs @ 12.09 hrs, Volume= 0.332 af, Depth> 2.91" Routed to Link 12L : PR / A

Summary for Subcatchment 8S: PRWS-11

Runoff = 15.61 cfs @ 12.14 hrs, Volume= 1.288 af, Depth> 4.73" Routed to Pond 11P : DET 110

Area	(ac)	CN	Desc	cription										
3.	270	91												
3.	270		100.	00% Per	vious Ar	ea								
Tc (min)	Leng (fee	th S et)	Slope (ft/ft)	Velocity (ft/sec	/ Capa) (city cfs)	Descri	ption						
10.2							Direct	Entry	,					
				S	ubcato	hme	nt 8S	: PR\	NS-1 ⁻	1				
					Нус	drograp	h							
17	1		-	·	+				 !		 			Runoff
16	+		+ - + -	·	+ 15	.61 cfs	S		 	Tvr	ا م	1 24	hr	
15- 14-		L	<u>-</u> -	·				25_V	oar l	yn Rain	of II	=6 0	5"	
13				·	$\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$			Run		Aroa	i=3	-0.0 270	ac	
12- 11-			 - 	·	$\frac{1}{1}$ $-\frac{1}{1}$		R	inof	fVo	lum	⊔_J. ⊳=1	288	at	
(sj: 10			+- +-		+			R	inof	fDe	nth	>4 7	3"	
o 91			 -	·	+					Tc	=10	2 m	nin	
" 7			<u> </u> -	·	$\frac{1}{\frac{1}{1}} =$	M		- <mark> </mark>	$\frac{1}{\frac{1}{1}}$			CN=	91	
6- 5-			<u> </u> - 	·		BF			<u> </u> 		<u> </u>			
4			+-	·	+	9			 		 			
3-1 2-1			+ - 	 	+						 			
1								ĮĮĮ						
0- 14 5	6	7	8	9 10	ŕ 11 T	12 ime (ho	13 14 13 14	1 15	16	17	18	19	20	

Summary for Subcatchment 9S: PRWS-30 / C

Runoff = 0.54 cfs @ 12.15 hrs, Volume= 0.042 af, Depth> 1.86"

Area (ac)	CN Des	cription						
* 0.270	61							
0.270	100	.00% Pervi	ous Area					
Tc Ler (min) (fe	igth Slope eet) (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
9.6				Direct Entry,	I			
A=		Sub	catchme Hydrogra	nt 9S: PRWS	6-30 / C		1	
0.6			0.54 c	2fs			 - +	Runoff
0.55					-T	pe III-24	1-hr-	
0.45				25-Y	ear Rai off Are	nfall=6. a=0.270	05"-) ac-	

Summary for Subcatchment 13S: PRWS-20 / B

Runoff = 5.97 cfs @ 12.20 hrs, Volume= 0.517 af, Depth> 2.10"

A	rea	(ac)	CN	Des	criptio	n											
*	2.	950	64														
	2.950 100.00% Pervious Area																
(m	Tc nin)	Leng (fe	gth et)	Slope (ft/ft)	Velo (ft/s	city sec)	Capa (acity (cfs)	Des	cripti	on						
1	3.9								Dire	ect E	ntry,						
					S	Subc	atch	mer	nt 13	S: P	RWS	6-20	/ B				
							Ну	drogr	aph								
	ſ	1					5	5.97 c	ofs -		 						Runoff
	6										1		Тур	be III	24-	hr	
	- 5	, 	 							- 2 F	5-Ye Runo	ear F off A	Rair Area	nfall= n=2.9	=6.0 950	5" ac	
(cfs)	4	, 	 + 			+				Rūī	າoff Ru	Vol nof	um f De	e=0. pth>	517 >2.1	af 0"	
Flow	3-*´										 		Тс	=13	9 m `N=	nin 64	
	2-		+ 		- 					 	+ 		 		/11-	<u></u>	
	- 1-* -	,				 											
	0-4		7	8	9	10	11	12 Time (13 hours)	14	15	16	17	18	19	20	

MR-SW-Model01-Retain-itType III 24-hr25-Year Rainfall=6.05"Prepared by SLR International CorporationPrinted 6/27/2023HydroCAD® 10.20-3cs/n 08105© 2023 HydroCAD Software Solutions LLCPage 35

Summary for Reach 5R: 18" PIPE

Inflow = 5.46 cfs @ 5.00 hrs, Volume= Outflow = 5.73 cfs @ 6.94 hrs, Volume= Routed to Link 6L : EX / A 6.791 af, Incl. 5.46 cfs Base Flow 6.776 af, Atten= 0%, Lag= 116.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.47 fps, Avg. Travel Time= 0.3 min

Peak Storage= 106 cf @ 5.05 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 5.42 cfs

18.0" Round Pipe n= 0.013 Length= 60.0' Slope= 0.0027 '/' Inlet Invert= 134.70', Outlet Invert= 134.54'

Reach 5R: 18" PIPE

MR-SW-Model01-Retain-itType III 24-hr25-Year Rainfall=6.05"Prepared by SLR International CorporationPrinted 6/27/2023HydroCAD® 10.20-3cs/n 08105© 2023 HydroCAD Software Solutions LLCPage 36

Summary for Reach 10R: 18" PIPE

Inflow = 5.46 cfs @ 5.00 hrs, Volume= Outflow = 5.73 cfs @ 6.94 hrs, Volume= Routed to Link 12L : PR / A 6.791 af, Incl. 5.46 cfs Base Flow 6.776 af, Atten= 0%, Lag= 116.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.47 fps, Avg. Travel Time= 0.3 min

Peak Storage= 106 cf @ 5.05 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 5.42 cfs

18.0" Round Pipe n= 0.013 Length= 60.0' Slope= 0.0027 '/' Inlet Invert= 134.70', Outlet Invert= 134.54'

Reach 10R: 18" PIPE

MR-SW-Model01-Retain-it	Type III 24-hr	25-Year Rain	fall=6.05'
Prepared by SLR International Corporation		Printed	6/27/2023
HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software Sol	lutions LLC		Page 37

Summary for Pond 11P: DET 110

Inflow Ar	rea = 3.1	270 ac, 0.00%	Impervious, Inflow Depth > 4.73" for 25-Year event
Inflow	= 15.6	61 cfs @ 12.14	hrs. Volume= 1.288 af
Outflow	= 9.4	10 cfs @ 12.31	hrs, Volume= 1.036 af, Atten= 40%, Lag= 9.9 min
Primary Route	= 9.4 ed to Link 12L	10 cfs @ 12.31 : PR / A	hrs, Volume= 1.036 af
Routing Peak Ele	by Stor-Ind me ev= 129.50' @	ethod, Time Spa 12.31 hrs Surf	n= 5.00-20.00 hrs, dt= 0.05 hrs Area= 0.134 ac Storage= 0.527 af
Plug-Flo Center-o	w detention tir of-Mass det. tir	me= 116.3 min c me= 64.5 min (8	alculated for 1.033 af (80% of inflow) 21.1 - 756.5)
Volume	Invert	Avail.Storage	Storage Description
#1A	125.10'	0.000 af	56.00'W x 104.00'L x 5.67'H Field A 0.758 af Overall - 0.758 af Embedded = 0.000 af x 40.0% Voids
#2A	125.10'	0.599 af	retain_it retain_it 5.0' x 91 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 7 Rows adjusted for 415.6 cf perimeter wall
		0.599 af	Total Available Storage
Stora	ge Group A cr	reated with Char	nber Wizard
Device	Routing	Invert Ou	tlet Devices

Device	rtouting	mvort	Oddet Devices
#1	Primary	123.00'	18.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 123.00' / 122.00' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 1.77 sf
#2	Device 1	127.00'	8.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
#3	Device 1	129.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=9.36 cfs @ 12.31 hrs HW=129.49' (Free Discharge) 1=Culvert (Passes 9.36 cfs of 16.10 cfs potential flow) 2=Orifice/Grate (Orifice Controls 4.94 cfs @ 7.08 fps) -3=Sharp-Crested Rectangular Weir (Weir Controls 4.42 cfs @ 2.30 fps)

MR-SW-Model01-Retain-it

Prepared by SLR International Corporation HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software Solutions LLC

Pond 11P: DET 110

MR-SW-Model01-Retain-it	Type III 24-hr	25-Year Rain	fall=6.05"
Prepared by SLR International Corporation		Printed	6/27/2023
HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software Sol	utions LLC		Page 39

Summary for Link 6L: EX / A

Inflow A	Area	=	5.650 ac,	0.00% Impervious,	Inflow Depth > 16.93	3" for 25-Year event
Inflow	:	=	20.19 cfs @	12.17 hrs, Volume	= 7.971 af	
Primary	y :	=	20.19 cfs @	12.17 hrs, Volume	e= 7.971 af, A	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 6L: EX / A

Summary for Link 12L: PR / A

Inflow A	Area	=	4.640 ac,	0.00% Impervious,	Inflow Depth > 21.06	" for 25-Year event
Inflow		=	17.12 cfs @	12.29 hrs, Volume	e= 8.144 af	
Primary	/	=	17.12 cfs @	12.29 hrs, Volume	e= 8.144 af, A	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 12L: PR / A

Summary for Subcatchment 1S: EXWS-10

Runoff = 18.41 cfs @ 12.17 hrs, Volume= 1.490 af, Depth> 3.16" Routed to Link 6L : EX / A

Area	(ac) C	N Des	cription									
5.	650 6	69										
5.	650	100.	00% Pervi	ous Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descri	otion						
12.0					Direct	Entry,						
			Su	ıbcatchm	ent 1S	EXW	/S-1()				
				Hydrogr	aph							
20				+ 				+ +		+ +	·	Runoff
19 3 18	<u>}</u>	<u> </u> <u> </u> - <u> </u> <u> </u> -	$\frac{1}{1}$			-		Тур	e III	24-	hr	
17 - 16-	<u>}</u>	+ - I I + -	+ + + + + + + + + + + + - + - + - + - + - + - + - + - + - + - + - + - + + - +			50-Ye	ear I	Rain	fall	=6.8	8"	
15 14	+					Run	off A	\rea	=5.6	650	ac	
13 (g 12	} }		 			Inoff	Vol	ume)=1.	490	at	
ຍ 11- ຮ 10-	<u>++</u>	+-				RU	ΠΟΤ	I De To	ptn-	23.1 0 m	00	
Ē 9			+ + + + + + + + + + + +			-		IG	-14 (.U_III .N=	69	
7-1 6-1	} }	<u> </u> <u> </u> - <u> </u> <u>+</u> -	$ \frac{1}{1}$ $ \frac{1}{1}$			-		<u> </u>	·	+		
5 4	k	 + - -	+ +			-		+ +	· ·	+ +		
3 2	<u>}</u>		+ 				7777		·	$ \frac{1}{1}$	·	
1				· · · · · · · · · · · · · · · · · · ·	, 							
5	6	7 8	9 10	11 12 Time (I	13 14 1 ours)	15	16	17	18	19	20	

Summary for Subcatchment 2S: EXWS-20 / B

Runoff = 8.08 cfs @ 12.15 hrs, Volume= 0.627 af, Depth> 3.88"

	Area	(ac)	CN	Des	cription								
*	1.	940	76	i									
	1.	940		100.	00% Perv	ious Area							
(r	Tc nin)	Leng (fe	gth et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descrip	tion					
-	10.3						Direct I	Entry,					
					Sub	catchme	nt 2S: E	xws	-20 / B	6			
						Hydrogr	aph				+ -]	
	9-	1				8.08 0	ofs					Runo	off
	8-7	Î							Т	ype l	l i 2 4-h	nr	
	7-	,					5	50-Ye	ar Ra	infal	l=6.88	3 ^{™ -}	
	6						Ru	noff	Volu	me=0	.940 a .627 a	af	
r (cfs)	5-		- - - -					Ru	noff [Depth	>3.88	3"	
Flow	4	1	 		 				·	Гс=1().3 mi	n	
	3-	,,	+ 	- + 							CN=7	6-	
	2-	,	+						· – – – – – – – 				
	1-1		+										
	0-5	6	7	8	9 10	11 12 Time (13 14 (hours)	15	16	7 18	19	20	

Summary for Subcatchment 3S: EXWS-30 / C

Runoff = 0.70 cfs @ 12.15 hrs, Volume= 0.054 af, Depth> 2.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.88"

	Area	(ac)	CN	Desc	cription			
*	0.	270	61					
	0.	270		100.	00% Pervi	ous Area		
	Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	9.6	•	*		, <i>,</i> , , , , , , , , , , , , , , , , ,	Y	Direct Entry,	

Subcatchment 3S: EXWS-30 / C

Summary for Subcatchment 7S: PRWS-10

Runoff = 6.03 cfs @ 12.09 hrs, Volume= 0.408 af, Depth> 3.57" Routed to Link 12L : PR / A

Summary for Subcatchment 8S: PRWS-11

Runoff = 18.00 cfs @ 12.14 hrs, Volume= 1.497 af, Depth> 5.49" Routed to Pond 11P : DET 110

Area	(ac)	CN	Dese	cription											
3.	270	91													
3.	270		100.	00% Pei	vious A	Area									
Tc (min)	Leng (fee	th S et)	Slope (ft/ft)	Velocit (ft/sec	y Cap	oacity (cfs)	Des	cripti	on						
10.2							Dire	ect Er	ntry,						
				S	Subca	tchm	ent 8	3S: F	PRW	S-11					
					н	lydrogra	aph								
20- 10-	+ + +	 	+ - + - 	 	- + · + ·	+ +			+ +	- - 	· + · + 		 	+ +	Runoff
18						<u>0.00 c</u>					Тур	be ll	24-	hr	
16	/		 - <u>+</u> -	' 				-50)-Ye	ar F	Rain	fall	=6.8	8"	
15- 14-	/+ /+		4 - 4 -	 				R	unc	off A	rea	=3.	270	ac	
13- 12-	/+ /+		+ - + -		- + - - +		 	Rur	off	Vol	ume	e=1.	497	af	
\$j 11 ₹ > 10 ₹			+ - + -	·¦ ·¦	- -				Ru	noff	De	pth	>5.4	9"	
9 9 8			<u> </u> - 	·	- <u> </u>			· [_		-		=10	.2 m		
7		 	 + - + -	 	 + +			· - - 	 + +	 - 	 + + +		UN=	91	
5	+		+ - 		- + -			· – – – –		- -	· +		 		
3			 -	·						- -			 		
1				mm					<u>III</u>						
0- 5	6	7	8	9 10	11	12 Time (h	13 13	14	15	16	17	18	19	20	

Summary for Subcatchment 9S: PRWS-30 / C

Runoff = 0.70 cfs @ 12.15 hrs, Volume= 0.054 af, Depth> 2.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.88"

	Area	(ac)	CN	Desc	cription		
*	0.	270	61				
	0.	270		100.	00% Pervi	ous Area	
	Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	9.6				()	()	Direct Entry,

Subcatchment 9S: PRWS-30 / C

Summary for Subcatchment 13S: PRWS-20 / B

Runoff = 7.66 cfs @ 12.20 hrs, Volume= 0.658 af, Depth> 2.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.88"

	Area	(ac) Cl	N Dese	cription								
*	2.	950 64	4									
	2.	950	100.	00% Pervi	ous Area							
(I	Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	De	scription					
	13.9					Dir	ect Entry,	I				
				Subo	atchmen	nt 13	BS: PRW	S-20 /	В			
					Hydrogra	aph	1	1	ļ	1	!	
	8				7.66 c	rs				 	 	Runoff
	-		i i 			1			ype ll	124	-hr	
	7-						50-Y	ear Ra	ainfall	=6.8	8"	
	6		+ · 		+		Run	off Ar	rea=2.	950	ac	
	5						Runof	f Volu	me=0	.658	af-	
(cfs)			i i 	, , , , , , , , , , , , , , , , , , ,		1	Πι	Inoff	Depth	>2.6	58"	
Flow	4-								Tc=13	8.9 n	nin	
	3-								L I I I	CN=	64	
	2							$\frac{1}{1} \frac{1}{1} - \frac{1}{1}$	 			

14

13

Time (hours)

15

16

17

18

19

20

8

6

ź

9

10

11

12

MR-SW-Model01-Retain-itType III 24-hr50-Year Rainfall=6.88"Prepared by SLR International CorporationPrinted 6/27/2023HydroCAD® 10.20-3cs/n 08105© 2023 HydroCAD Software Solutions LLCPage 48

Summary for Reach 5R: 18" PIPE

Inflow = 5.46 cfs @ 5.00 hrs, Volume= Outflow = 5.73 cfs @ 6.94 hrs, Volume= Routed to Link 6L : EX / A 6.791 af, Incl. 5.46 cfs Base Flow 6.776 af, Atten= 0%, Lag= 116.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.47 fps, Avg. Travel Time= 0.3 min

Peak Storage= 106 cf @ 5.05 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 5.42 cfs

18.0" Round Pipe n= 0.013 Length= 60.0' Slope= 0.0027 '/' Inlet Invert= 134.70', Outlet Invert= 134.54'

Reach 5R: 18" PIPE

MR-SW-Model01-Retain-itType III 24-hr50-Year Rainfall=6.88"Prepared by SLR International CorporationPrinted 6/27/2023HydroCAD® 10.20-3cs/n 08105© 2023 HydroCAD Software Solutions LLCPage 49

Summary for Reach 10R: 18" PIPE

Inflow = 5.46 cfs @ 5.00 hrs, Volume= Outflow = 5.73 cfs @ 6.94 hrs, Volume= Routed to Link 12L : PR / A 6.791 af, Incl. 5.46 cfs Base Flow 6.776 af, Atten= 0%, Lag= 116.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.47 fps, Avg. Travel Time= 0.3 min

Peak Storage= 106 cf @ 5.05 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 5.42 cfs

18.0" Round Pipe n= 0.013 Length= 60.0' Slope= 0.0027 '/' Inlet Invert= 134.70', Outlet Invert= 134.54'

Reach 10R: 18" PIPE

MR-SW-Model01-Retain-it	Type III 24-hr	50-Year Rain	nfall=6.88"
Prepared by SLR International Corporation		Printed	6/27/2023
HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software Solu	utions LLC		Page 50

Summary for Pond 11P: DET 110

Inflow A	rea = 3.	270 ac, 0.00%	Impervious, Inflow Depth > 5.49" for 50-Year event
Inflow	= 18.0	0 cfs @ 12.14	hrs, Volume= 1.497 af
Outflow	= 12.6	62 cfs @ 12.26	hrs, Volume= 1.243 af, Atten= 30%, Lag= 7.4 min
Primary Route	= 12.6 ed to Link 12L	62 cfs @ 12.26 : PR / A	hrs, Volume= 1.243 af
Routing Peak Ele	by Stor-Ind m ev= 129.70' @	ethod, Time Spa 12.26 hrs Surf	an= 5.00-20.00 hrs, dt= 0.05 hrs f.Area= 0.134 ac Storage= 0.551 af
Plug-Flo Center-o	ow detention tin of-Mass det. tin	me= 109.0 min c me= 60.7 min (8	calculated for 1.243 af (83% of inflow) 314.5 - 753.8)
Volume	Invert	Avail.Storage	Storage Description
#1A	125.10'	0.000 af	56.00'W x 104.00'L x 5.67'H Field A 0.758 af Overall - 0.758 af Embedded = 0.000 af x 40.0% Voids
#2A	125.10'	0.599 af	retain_it retain_it 5.0' x 91 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 7 Rows adjusted for 415.6 cf perimeter wall
		0.599 af	Total Available Storage
Stora	age Group A c	reated with Char	mber Wizard
Device	Routing	Invert Ou	tlet Devices

00100	rtouting		edite Berneed
#1	Primary	123.00'	18.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 123.00' / 122.00' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 1.77 sf
#2	Device 1	127.00'	8.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
#3	Device 1	129.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			· · · · · · · · · · · · · · · · · · ·

Primary OutFlow Max=12.46 cfs @ 12.26 hrs HW=129.69' (Free Discharge) 1=Culvert (Passes 12.46 cfs of 16.38 cfs potential flow) 2=Orifice/Grate (Orifice Controls 5.16 cfs @ 7.40 fps) -3=Sharp-Crested Rectangular Weir (Weir Controls 7.29 cfs @ 2.72 fps)

MR-SW-Model01-Retain-it

Prepared by SLR International Corporation HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software Solutions LLC

Type III 24-hr 50-Year Rainfall=6.88" Printed 6/27/2023 Page 51

Pond 11P: DET 110

Summary for Link 6L: EX / A

Inflow /	Area	a =	5.650 ad	С,	0.00% Impervious,	Inflow Depth > 17.	55" for	50-Year event
Inflow		=	23.87 cfs	@	12.17 hrs, Volume	e= 8.265 af		
Primar	у	=	23.87 cfs	@	12.17 hrs, Volume	e= 8.265 af,	Atten=	0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 6L: EX / A

MR-SW-Model01-Retain-it	Type III 24-hr	50-Year Rainfall=6.88"
Prepared by SLR International Corporation		Printed 6/27/2023
HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software Sol	utions LLC	Page 53

Summary for Link 12L: PR / A

Inflow /	Area	a =	4.640 ac,	0.00% Impervious,	Inflow Depth > 21.79	9" for 50-Year event
Inflow		=	21.10 cfs @	12.25 hrs, Volume	= 8.427 af	
Primary	у	=	21.10 cfs @	12.25 hrs, Volume	= 8.427 af, <i>i</i>	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 12L: PR / A

Summary for Subcatchment 1S: EXWS-10

Runoff = 22.55 cfs @ 12.17 hrs, Volume= 1.825 af, Depth> 3.88" Routed to Link 6L : EX / A

	Area	(ac) C	N Des	cription								
*	5.	650 6	69									
	5.	650	100.	.00% Pervi	ous Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	on					
	12.0		, <i>,</i>		· · · ·	Direct Er	ntry,					
				Su	ıbcatchm	ent 1S: E	EXWS	-10				
		A = = = + = =		+	Hydrogr	aph						
	Flow (cfs) Flow (cfs) 5524300 Flow (cfs) 552400 Flow (cfs)					cfs Run)-Yea Sunof Noff V Runo	Typ r Rain f Area olum off De Tc	pe III ifall= i=5.6 e=1.8 pth> =12. C	24- 50 a 325 3.80 0 m	hr 9" ac af in 69	Runoff
	1 0 5	6	7 8	9 10	11 12 Time (I	13 14 hours)	15 1	16 17	18	19	20	

Summary for Subcatchment 2S: EXWS-20 / B

Runoff = 9.64 cfs @ 12.15 hrs, Volume= 0.752 af, Depth> 4.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.79"

A	Area	(ac) Cl	N Des	cription								
*	1.	940 7	6									
	1.	940	100.	00% Pervi	ous Area							
(n	Tc nin)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	De	escription					
1	0.3					Di	rect Entry,					
				Sub	catchme	ent 2	S: EXWS	-20 / E	3			
					Hydrogi	raph						
					 9 64 c	rfs			$\frac{1}{1}$			Runoff
	10-1			· +					ype II	24-	hr	
	9	 	<mark> </mark> <u> </u> -				100-Ye	ar Ra	ainfall	=7.7	9"	
	8-1	i i k+					Rund	off Ai	rea=1.	940	ac	
	7-7						Runoff	Volu	me=0.	752	af	
(cfs)	6						Ru	noff	Depth	>4.6	5"	
Flow	5								Tc=10	.3 m	in	
	4									CN=	76	
	3											
	2								· <u>-</u>			
	1											

12 13 Time (hours) 14

15

16

17

18

19

20

0-

ż

6

8

10

11

ģ

Summary for Subcatchment 3S: EXWS-30 / C

Runoff = 0.89 cfs @ 12.14 hrs, Volume= 0.068 af, Depth> 3.03"

Summary for Subcatchment 7S: PRWS-10

Runoff = 7.27 cfs @ 12.09 hrs, Volume= 0.494 af, Depth> 4.32" Routed to Link 12L : PR / A

Summary for Subcatchment 8S: PRWS-11

Runoff = 20.60 cfs @ 12.14 hrs, Volume= 1.725 af, Depth> 6.33" Routed to Pond 11P : DET 110

	Area	(ac)	CN	Desc	ription											
*	3.	270	91													
	3.	270		100.0	00% Per	vious	Area									
	Tc (min)	Length (feet	n Sl) (1	ope ft/ft)	Velocity (ft/sec	y Ca	apacity (cfs)	Des	scripti	on						
	10.2							Dire	ect E	ntry,						
					S	Subc	atchn	nent	8S: I	PRW	S-11					
							Hydrog	raph								
	23 22 21			+ - + - + -		- +	20.60	cfs			- - -					Runoff
	20- 19- 18-			<u>+</u> - <u>+</u> - - <u>+</u> -					10()-Ye	ar F	i yp Rain	e m fall=	=7.7	9"	
	17- 16- 15-					- <u>+</u> - <u>+</u>			F Rur	Rund noff	off A Vol	irea ume	=3.2 =1	270 725	ac af	
	(cls) 13 12 12 * 11					- <u>+</u>				Ru	noff	De	pth>	>6.3	3"	
	9 8			+ -					 		- - -		=10 (.2 m CN=	91	
	7 6 5			 - + - + -	$ \frac{1}{1}$ $ -$				 		 - -	· +	 		└ └ └	
	4 3 2		<u>-</u>	$ \frac{1}{1} - $		 -+					 	· + · +	 			
	1 0 5	6	7	ř 8	9 10	11	12	13	14	15	16	17	18	19	20	
							rime	(nours)								

Summary for Subcatchment 9S: PRWS-30 / C

Runoff = 0.89 cfs @ 12.14 hrs, Volume= 0.068 af, Depth> 3.03"

Summary for Subcatchment 13S: PRWS-20 / B

Runoff = 9.60 cfs @ 12.20 hrs, Volume= 0.820 af, Depth> 3.34"

0

5

6

ż

8

ģ

10

11

12 13 Time (hours) . 14 15

16

17

18

19

20

Ā	Area	(ac)	CN	Des	cription									
*	2.	950	64											
	2.	950		100.	00% Pervi	ious Area								
(n	Tc nin)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	De	escriptior	1					
1	3.9						Di	rect Ent	ry,					
					Subo	catchme	nt 1	3S: PR	WS-2	0 / B				
						Hydrog	raph							
	1			i i L	i i					; !	i i			Runoff
	10-					9.60	cfs			· -		04	b.v.	
	9				+ 		1			- t y j	ре п	- 24-	nr	
								-100-	Year	Rair	nfall	=77	9"	
	8	+		 +-	+			Ru	Inoff	Area	a=2.9	950	ac	
	7-7							Rund	off V	olum	e=0.	820	af	
(cfs)	6	+					/	F	Runc	off De	epth>	>3.3	4"	
Flow	5-						H_		i i 	Тс	;=13	.9 m	in	
	4										Ć	CN=	64	
	3			 	+ 						+ 	+		

MR-SW-Model01-Retain-itType III 24-hr100-Year Rainfall=7.79"Prepared by SLR International CorporationPrinted 6/27/2023HydroCAD® 10.20-3cs/n 08105© 2023 HydroCAD Software Solutions LLCPage 61

Summary for Reach 5R: 18" PIPE

Inflow = 5.46 cfs @ 5.00 hrs, Volume= Outflow = 5.73 cfs @ 6.94 hrs, Volume= Routed to Link 6L : EX / A 6.791 af, Incl. 5.46 cfs Base Flow 6.776 af, Atten= 0%, Lag= 116.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.47 fps, Avg. Travel Time= 0.3 min

Peak Storage= 106 cf @ 5.05 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 5.42 cfs

18.0" Round Pipe n= 0.013 Length= 60.0' Slope= 0.0027 '/' Inlet Invert= 134.70', Outlet Invert= 134.54'

Reach 5R: 18" PIPE

MR-SW-Model01-Retain-itType III 24-hr100-Year Rainfall=7.79"Prepared by SLR International CorporationPrinted 6/27/2023HydroCAD® 10.20-3cs/n 08105© 2023 HydroCAD Software Solutions LLCPage 62

Summary for Reach 10R: 18" PIPE

Inflow = 5.46 cfs @ 5.00 hrs, Volume= Outflow = 5.73 cfs @ 6.94 hrs, Volume= Routed to Link 12L : PR / A 6.791 af, Incl. 5.46 cfs Base Flow 6.776 af, Atten= 0%, Lag= 116.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.47 fps, Avg. Travel Time= 0.3 min

Peak Storage= 106 cf @ 5.05 hrs Average Depth at Peak Storage= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 5.42 cfs

18.0" Round Pipe n= 0.013 Length= 60.0' Slope= 0.0027 '/' Inlet Invert= 134.70', Outlet Invert= 134.54'

Reach 10R: 18" PIPE

MR-SW-Model01-Retain-it	Type III 24-hr	100-Year Rair	nfall=7.79"
Prepared by SLR International Corporation		Printed	6/27/2023
HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software S	Solutions LLC		Page 63

Summary for Pond 11P: DET 110

Inflow A	rea = 3.	270 ac, 0.00%	Impervious, Inflow Depth > 6.33" for 100-Year event
Inflow	= 20.6	60 cfs @ 12.14	hrs. Volume= 1.725 af
Outflow	= 15.7	75 cfs @ 12.24	hrs. Volume= 1.470 af. Atten= 24%. Lag= 6.0 min
Primary Route	= 15.7 ed to Link 12L	75 cfs @ 12.24 : PR / A	hrs, Volume= 1.470 af
Routing Peak Ele	by Stor-Ind m ev= 129.88' @	ethod, Time Spa 212.24 hrs Surf	an= 5.00-20.00 hrs, dt= 0.05 hrs f.Area= 0.134 ac Storage= 0.573 af
Plug-Flo Center-c	w detention tii of-Mass det. tii	me= 101.4 min c me= 57.2 min(8	calculated for 1.470 af (85% of inflow) 308.5 - 751.4)
Volume	Invert	Avail.Storage	Storage Description
#1A	125.10'	0.000 af	56.00'W x 104.00'L x 5.67'H Field A 0.758 af Overall - 0.758 af Embedded = 0.000 af x 40.0% Voids
#2A	125.10'	0.599 af	retain_it retain_it 5.0' x 91 Inside #1 Inside= 84.0"W x 60.0"H => 36.41 sf x 8.00'L = 291.3 cf Outside= 96.0"W x 68.0"H => 45.33 sf x 8.00'L = 362.7 cf 7 Rows adjusted for 415.6 cf perimeter wall
		0.599 af	Total Available Storage
Stora	age Group A c	reated with Char	mber Wizard
Device	Routing	Invert Ou	itlet Devices

DCVICC	rtouting	mvort	Outlet Devices
#1	Primary	123.00'	18.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 123.00' / 122.00' S= 0.0200 '/' Cc= 0.900
			n= 0.012, Flow Area= 1.77 sf
#2	Device 1	127.00'	8.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
#3	Device 1	129.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=15.62 cfs @ 12.24 hrs HW=129.88' (Free Discharge) 1=Culvert (Passes 15.62 cfs of 16.63 cfs potential flow) 2=Orifice/Grate (Orifice Controls 5.36 cfs @ 7.68 fps) -3=Sharp-Crested Rectangular Weir (Weir Controls 10.26 cfs @ 3.06 fps)

MR-SW-Model01-Retain-it

Prepared by SLR International Corporation HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software Solutions LLC

Pond 11P: DET 110

MR-SW-Model01-Retain-it	Type III 24-hr	100-Year Rainfall=7.79"
Prepared by SLR International Corporation		Printed 6/27/2023
HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software So	olutions LLC	Page 65

Summary for Link 6L: EX / A

Inflow A	Area	ı =	5.650 ac,	0.00% Impervious,	Inflow Depth > 18.2	27" for 100-Year event
Inflow		=	28.01 cfs @	12.17 hrs, Volume	e= 8.601 af	
Primary	у	=	28.01 cfs @	12.17 hrs, Volume	e= 8.601 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 6L: EX / A

MR-SW-Model01-Retain-it	Type III 24-hr	100-Year Rainfall=7.79"
Prepared by SLR International Corporation		Printed 6/27/2023
HydroCAD® 10.20-3c s/n 08105 © 2023 HydroCAD Software Set	olutions LLC	Page 66

Summary for Link 12L: PR / A

Inflow <i>J</i>	Area	=	4.640 ac,	0.00% Imperviou	s, Inflow Depth > 22.60)" for 100-Year event
Inflow	:	=	25.25 cfs @	12.22 hrs, Volun	ne= 8.740 af	
Primar	y :	=	25.25 cfs @	12.22 hrs, Volun	ne= 8.740 af, <i>I</i>	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 12L: PR / A

Appendix H Watershed Maps

Deming Street Multi-Family Development

240 Deming Street, South Windsor, Connecticut

Drainage Report

Prepared for: Metro Realty 6 Executive Drive, Suite 100 Farmington, CT 06032

SLR Project No.: 141.13571.00069

June 28, 2023

